试验设计及其优化

农业工程系杨中平

课程简介

1、课程性质与任务

试验优化:研究如何科学、合理、高效地设计试验,广泛应用于科研、设计、管理等。

试验优化的主要内容:

试验设计: 离散优化

回归设计:模型、连续优化

2、课程的主要内容

- 第1~3章: 试验设计基础
- 第4~7章: 正交试验设计的拓广和现代发展
- 第8~9章: 方案设计和数据处理的优化
- 第10章: 数据分析和处理新技术
- 第11章: 常用软件

课程重点讲授内容

- 第1、2、3章: 试验设计基础
- · 第4、5、7章: 稳健试验设计、广义试验设计和均匀试验设计
- 第10章: 探索性数据分析

3、课程学习要求

以高数、线性代数、概率论与数理统计等为基础。要求重点掌握试验设计的基本原理和基本方法。

通过练习和实践,要求具备根据实际 问题的需要,进行试验方案设计、组织实施 数据处理与分析等的基本能力。

导论

0.1 最优化

高效地寻找问题在一定条件下的最优解。

应用领域:

在科研开发、生产中,追求提高产量和质量、 降低成本、节能减排、改善工作条件等最优化。 在经济规划、工程建设、产品设计、技术改进、 工艺改革等领域,实现项目最优化。

- 最优化按计算方法分为两类:
 - (1) 模型最优化,即可以建立问题的数学模型,计 算其最优化
 - (2) 试验最优化,模型难以建立,需要试验探索, 较为常见。

- 最优化按结果分为:
 - (1) 全局最优化

在全部过程、区域或条件下寻找问题最优点;

(2) 局部最优化

即在某一区域或条件下寻找问题最优点;

科研和工程上,一般采用局部寻优的方法。

最优化按是否求导分为:

(1) 导数法(差分法)

对函数性质有一定要求,能够揭示事物更深一

层关系;

(2) 直接法

应用范围更广,适用于试验设计最优化。

• 现代优化技术主要有三个方面:

优化控制

优化设计

优化试验

• 常用优化技术:

直接优化、进化优化、试验优化、价值分析优化和数值计算优化

• 试验优化是直接优化和全局优化

0.2 试验优化

试验优化是直接优化和全局优化

即:

试验方案设计

试验实施

数据处理

全部过程进行优化。

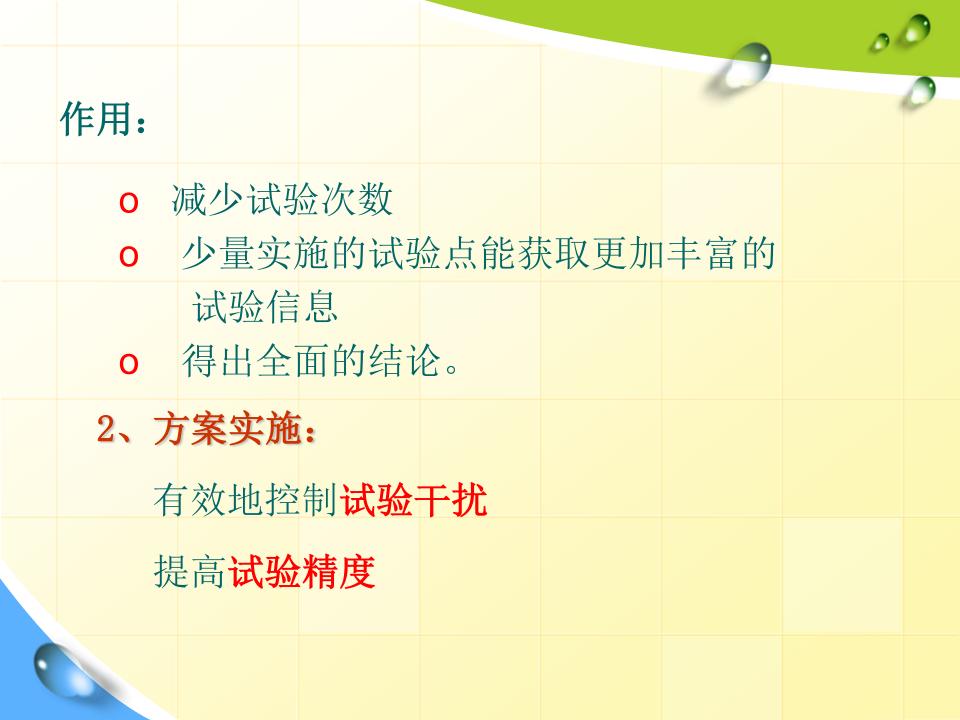
如安排四因素三水平的试验

即 c=4, b=3,若采用全面试验

试验次数L为:

$$L = b^C = 3^4 = 81$$
 \(\frac{1}{12}\)

一般,采用部分实施


如何选择部分试验点?


根据需要,从某种优良性出发,运用合适的优化方法,对试验进行优化:

1、方案设计:

使试验方案具有一定的优良性,如:

- 正交性
- 均匀性
- 饱和性
- 旋转性
- D-优良性

试验优化: 全过程优化、多目标优化

- □对于安排和实施多因素试验
- □对于构造各种线性和非线性数学模型
- □对于在科学研究中探索客观事物之间的相互规律
- □在生产过程中开发新工艺、管理寻求最佳决策等
- -----将提供有效的数学工具和方法

0.3 试验设计

试验设计是离散优化的基本方法,是从正交性、均匀性出发,利用正交表、均匀表进行试验方案设计,直接寻找试验最优点。

试验设计是试验优化的基础和重要组成部分。

试验设计发展历史

试验设计创立于20世纪20年代

标志是方差分析,英国学者Fisher利用拉丁方,解决了试验条件不均匀问题,提出了方差分析法。之后经历了三个阶段:

Fisher创立了传统试验设计

正交表的构造和开发,丰富了试验设计的内容和方法。其中数学家起了很大的推动作用。

稳健试验设计,是试验设计的现代发展, 是一种带有重大创新思想的试验优化方法。 在产品检测、医疗诊断、灾害预防预测、语 音识别等领域取得了重要进展。

0.4 试验设计的优良性

常用的有以下七个:

1. 正交性

若试验方案 $\varepsilon(N)$ 使j个因素的不同水平 x_{ij} 满足:

$$\begin{cases} \sum x_{ij} = 0 \\ \sum x_{ih} x_{ij} = 0 \end{cases}$$

则称该方案 $\varepsilon(N)$ 具有正交性。

正交性是优化中应用最广的一种优良性。作用:

能有效减少试验次数

消除各种效应之间的相关性

简化因素效应、交互作用效应的分析与计

算。

2. 稳健性(鲁棒性)

指设计方案 $\varepsilon(N)$ 对各种噪声因素不敏感,或抗干扰能力较好。

稳健设计可以使产品或过程在使用运行中与目标始终一致,并不受 难以控制因素的影响。

3. 均匀性

主要体现在均匀表中,是一种比正交表试验点排列更均匀的试验方法。

采用均匀设计,可以比正交设计减少更 多的试验点,但仍能得到试验体系的主要特 征。

4. 饱和性

指试验方案 $\varepsilon(N)$ 的无重复试验次数比试验因素及其交互作用的自由度多1。即试验次数N是试验方案计算要求的最少次数。

0.5 试验设计优化分析

主要包括三个方面:

- 1、设计的优化分析
 - (1) 增强设计的适用性
 - (2) 强化设计的优良性
 - (3) 减小设计容量

2、发现和解决数据处理难题

如对缺失数据的弥补、不等水平因素极

差修正等。

3、数据处理新方法

如探索性数据分析等。

0.6 试验设计的应用

- 1、科研方面
- 2、生产工艺及质量
- 3、新产品研发
- 4、促进生产率增长

第一章 正交试验设计

§ 1.1 基本概念

例1-1 大豆施肥试验。试验考察用不同方式施用氮肥(N)和磷肥(P)对大豆亩产量(y)的影响,试验安排和试验结果如下:

y (Kg)	N1=0 (Kg)	N2=4 (Kg)
P1=0 (Kg)	200	225
P2=6 (Kg)	215	285

y (Kg)	N1=0 (Kg)	N2=4 (Kg)
P1=0 (Kg)	200	225
P2 = 6 (Kg)	215	285

其中:

y一试验指标,用以评价试验效果。

按性质分为:定量指标、定性指标;

按数量分为:单指标试验、为多指标试验;

N、P—一试验因素,x; 一般以A、B、C、D表示。

分两类: 变动因子(因素): 试验考察因子

固定因子(条件): 如品种、播种量、播种期

地力、管理、土壤水分等

因素水平 b:试验因素的不同状态或取值

一般取 b = 2, 3, 4, 5,

处理组合:各试验因素和水平组合形成的试验点

如

试验点 试验组合 施肥量组合

(kg)

 P_1N_1

P=0,

N=0

 P_1N_2

P=0,

N=4

-章 试验设计

 P_2N_1 P=6

全面试验(全部组合) 蕌

其中: L--试验次数

C---因素数

b--水平

部分实施: 如4因素3水平试验

$$L = b^c$$

全面试验
$$L=b^c$$
 $L=b^c=3^4=81$

若部分实施 L=9

称为1/9实施

如何选点?→正交表 → 正交试验设计

§ 1.2 正交表

1.2.1 均衡分布与正交表

以L4(23)为例

表 1 - 2 L ₄ (2 ⁵)						
之 別号 企 验 会	1	2	3			
1	1	1]			
2	1	2	2			
3	2	1	2			
4	2	2	1			

 $L_8(2^7)$

表 1 = 3 $-L_3^{(2^2)}$ 正交表

列号		i	2	3	4	ā	6	7	
1		1	1	1	1	1	ŀ	Ī	
2		1	1	1	2	2	2	2	•••
3		1	2	2	1	1	2	2	
4	.,	1	2	2	2	2	1	1	
5		2	1	2	l	2	1	2	
S		2	1	2	2	<u>-</u>	2	1	
7		2	2	I	7	2	2	1	
8		2	2	l	2	1	1	2	•
列名	a	þ	. ก	þ	<u>C</u> :	HÇ-	bс	abe	
区名]	2			5	· }		

 $L_9(3^4)$

试验专家	(1)A	(2)B	(3) <i>C</i>	(4)D
1	1	1	3	2
2	1	2	1	1 1
3	1	3	Ž	3
4	2	1	. 2	1 1
5	2	2	3	3
6	2	3	1	2
7	3	1	1	3
8	3	2	2	2
9	3	3	3	1

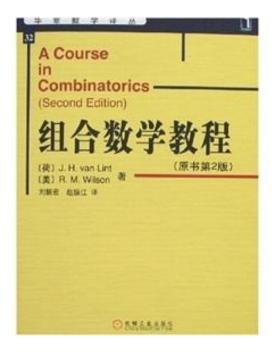
 $L_a(b^C)$ —等水平试验表

L—Latin 拉丁表

a一试验次数(试验组合数)

b一水平数

c一最多能安排的试验因素数


全面实施 $= b^c$ 部分实施 $= a/b^c$

如 $L_9(3^4)$ $a/b^c = 9/3^4 = 1/9$

故试验为1/9 实施。

为什么用正交表抽出的试验次数(试验组合数)可以用于试验设计?

因为正交表是运用组合数学理论构造的数学排列和表格,体现了均衡分布的思想。

$$\mathbf{E_{k}} = \begin{pmatrix} 1 & 0 \cdots \mathbf{y_{1}} & \cdots & 0 \\ 0 & 1 \cdots \mathbf{y_{2}} & \cdots & 0 \\ 0 & 0 & \mathbf{y_{3}} & 0 \\ & & & \mathbf{y_{k}} & \cdots \\ & & & & \ddots \\ & & & & \ddots \\ & & & & \ddots \\ 0 & 0 & \mathbf{y_{m}} & \cdots & 1 \end{pmatrix}$$

正交表的前身是拉丁方由普鲁士威廉二世阅兵"六六排列"引出

威廉二世

数学家<mark>欧拉</mark>由此创立<mark>拉丁方</mark>,引出了均衡 分布的数学思想。

A	В	C	D
D	A	В	C
C	D	A	В
В	C	D	A

20世纪20年代,费希尔将拉丁方用于农业栽培试验,并创立了试验设计学科。

品种 1	品种 2	品种 3
------	------	------

表 2-1

地块(1)	地块(2)	地块(3)
地块(4)	地块(5)	地块(6)
地块(7)	地块(8)	地块(9)

表 2-2

品种 2	品种1	品种 3
品种 1	品种3	品种 2
品种 3	品种2	品种 1

表 2-3

1.2.3 常用正交表的分类及特点蕌

(一) 分类: 标准表、非标准表、混合型正交表

1. 标准表(仅列到五水平) 蕌

二水平:
$$L_4(2^3), L_8(2^7), L_{16}(2^{15})$$

三水平:
$$L_9(3^4), L_{27}(3^{13}), L_{81}(3^{40})$$

四水平:
$$L_{16}(4^5), L_{64}(4^{21})$$

a、b、c之间存在一定的关系,主要取决于水平数b。

附录1 常用正交表

1	1	١	I	1	2^3	١
1	1	1	L_4	Ţ	4	1

	<u> </u>		
列号试验号	1	2	3
1	1	1	1
2	1	2	2
3	2	1	2
4	2	2	1
列 名	a	b	ab
区名	1		2

注:任两列的交互列为另外一列。

 $(2)L_8(2^7)$

列号试验号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2
列 名	a	b	ab	c	ac	bc	abc
区名	1		2	L	3	3	

特点:

- □标准表可考察因素间的交互作用。
- □ 水平数相等,且水平数只能取素数或素数幂
- □ 最少试验实施 $=b^2 \rightarrow b^3 \rightarrow \cdots$
- □ 最少试验实施因素数 *c*=*b*+1 接下则是水平数乘前号表的因素数再加1,以此类推。
 - ∴ 标准表结构取决于水平数b

标准表的缺点: 试验实施数间隔过大,选择余地小。

2、非标准表

二水平表: $L_{12}(2^{11}), L_{20}(2^{19}), L_{24}(2^{23})$

其它水平表: $L_{18}(3^7), L_{32}(4^9)$

特点:

- ◆等水平表,试验号在标准表之间不能考察因素间的交互作用。蕌
- ❖对于二水平非标准表: a可被4整除, c比a小1。 缺点: 为等水平表, 不能适应非等水平

3、混合型正交表

$$L_{8}(4 \times 2^{4})$$
 $L_{12}(3 \times 2^{4}), L_{12}(6 \times 2^{2})$
 $L_{16}(4 \times 2^{12}), L_{12}(4^{2} \times 2^{9})$
 $L_{18}(2 \times 3^{7}), L_{18}(6 \times 3^{6})$

特点:

- (1)一个或两个因素可取不同水平
- (2)一般不能考察因素间的交互作用

(9)	$L_9(2^1\times 3)$	3 ³)			(10)	$L_9(2^2 \times$	(3 ²)		
列号	1	2	3	4	列号	1	2	3	4
1	1	1	1	1	1	i	1	1	1
2	1	2	2	2	2	1	1	2	2
3	1	3	3	3	3	1	2	3	3
. 4	1	1	2	3	. 4	1	1	2	3
['] 5	1	2	3	1	5	1	1	3	1
6	1	3	1	2	6	1	2	1	2
7	2	1	3	2	7	2	1	3	2
8	2	2	1	3	8	2	1	1	3
9	2	3	2	1	9	2	2	2	1

(11	(12)	$L_{12}(6^1)$	$\times 2^2$)						
列号 试验号	1	2	3	4	5	列号	1	2	3
1	1	1	1	1	1	1	2	1	1
2	1	1	1	2	2	2	5	1	2
3	1	2	2	1	2	3	5	2	1
4	1	2	2	2	1	4	2	2	2
5	2	1	2	1	1	5	4	1	1
6	2	1	2	2	2	6	1	1	2
7	2	2	1	1	1	7	1	2	1
8	2	2	1	2	2	8	4	2	2
9	3	1	2	1	2	9	3	1	1
10	3	1	1	2	1	10	6	1	2
11	3	2	1	1	2	11	6	2	1
12	3	2	2	2	1	12	3	2	2

1.2.4 正交表的基本性质

1、正交性(均衡性)

(1) 任一列中各水平都出现、

- , 且出现的次数相等;
- (2)任两列之间各水平的所有可能组合都出现,且出现的次数相等。

以 $L_8(2^7)$ 为例

$(L)L_8$	2)						
列号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2
列 名	a	b	ab	<i>c</i>	ac	bc	abc
区名	1		2			3	

 $(2)L(2^{7})$

- ▶表中每列的不同水平1、2都 出现,而且1、2分别重复出现4 次,称为隐藏重复。
- ▶ 隐藏重复增强了试验结果的 可比性
- ▶任两列可能组合11、12、21
- 、22全出现,且分别出现两次

列号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	11	2
	a	b	ab	c	ac	bc	abc
区名	1		2			3	

由正交性:

- (1)各列地位平等,列之间可相互置换,称为列间置换。
- (2) 各行之间也可相互置换, 称为行间置换。
- (3) 同一列的水平数也可以相互置换, 称为水平置换。

正交表→初等变换→等价表

应用时可根据试验要求,把正交表换成与之等价的其它特殊形式的正交表。

2. 均衡分散性

- (1)任一列的各水平都出现,部 分实施包含全部试验水平;
- (2)任两列的所有组合都出现, 所以任两列为全面试验;
- (3)由正交性,部分实施试验点均衡地分布在全面试验点之中。

以 $L_{1}(2^{3})$ 为例,图 (T1-1)

$(1)L_4(2^3)$					
列号试验号	1	2	3		
1	1	1	1		
2	1	2	2		
3	2	1	2		
4	2	2	1		
	C				
	1				

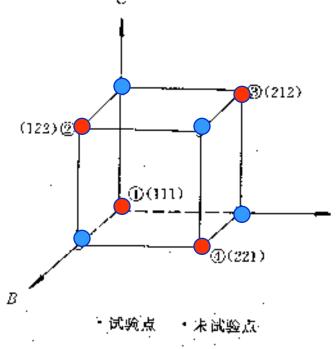


图 ! - 1 L₄(2*) 安排三因素试验

3. 综合可比性

由正交性:

- (1)任一列各水平出现的次数相等;
- (2)任两列间可能组合全出现,且出现次数相等

$(1)L_4(2^3)$						
列号	1	2	3			
1	1	1	1			
2	1	2	2			
3	2	1	2			
4	2	2	1			
	1					

$(1)L_4(2^3)$						
列号试验号	1	2	3			
1	1	1	1			
2	1	2	2			
3	2	1	2			
4	2	2	1			
列 名	a	b	ab			
区名	1		2			

∴任一因素各水平的试验条件相同。换言之,考 察某一因素各水平的影响效果时,可排除其它因 素的影响。

例如: A因素不同水平对Y的影响?

A₁: B₁, B₂, C₁, C₂各出现一次

 A_2 : B_1 , B_2 , C_1 , C_2 各出现一次

可见,B,C因素对Y有相同的影响,即试验条件相同。

∴综合比较因素对试验指标的影响 → 综合可比性

因素 试验号	(1) A	(2) B	(3) C				
1	$(1) A_1$	$(1) B_1$	(1) C ₁				
2	$(1) A_1$	(2) B_2	(2) C_2				
3	(2) A_2	(1) B_1	(2) C_2				
4	$(2) A_2$	(2) B_2	$(1) C_1$				

表 1-4 $L_4(2^3)$ 正交试验

注:表中第1行括号内数字表示正交表列号,其余括号内数字表示正交表各列的水平数字。

正交表的三个基本性质的关系:

- (1)正交性
- (2)均衡分散性(代表性)
- (3)综合可比性

正交性(即均衡性)→ 核心和基础 代表性和综合可比性 → 必然结果

§ 1.3 正交试验设计的基本方法

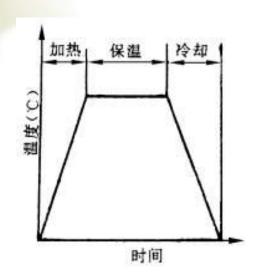
主要分两部分:

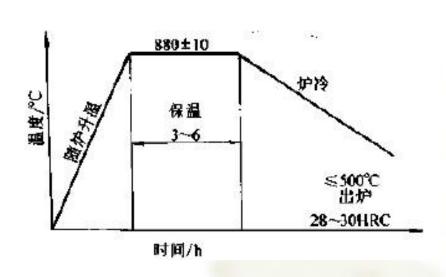
试验方案设计、试验结果处理

- 一、设计试验方案
- (1) 明确试验目的,确定试验指标;
- (2)选择试验因素;
- (3) 选取试验因素水平,列出因素水平表;
- (4)选用合适的正交表;
- (5)进行表头设计;
- (6)编制试验方案。
- 二、试验结果处理: 极差法

例1-2 某工厂为改革轴承座圈的退火工艺,提高产品硬度的合格率,拟做一项多因素试验。

退火主要用来消除轴承座圈的残余应力,降低硬度,改善切削加工性,防止切削加工过程中产生变形或裂纹,并为以后淬火作好准备。





轴承退火工艺

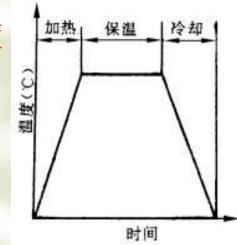
一、试验方案的设计

1. 确定试验指标

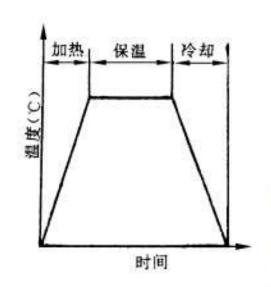
试验指标:单指标一硬度合格率 多指标

2、选择试验因素及水平

- (1)根据专业知识、以往研究的结论和试验的经验
- (2)尽量少选
- (3)优先选取:对试验指标影响大的因素 尚未完全掌握规律的因素 未曾被考察研究过的因素
- (4)水平以2-4为宜,对主要因素可适当多取水平
- (5)水平范围由经验或初步试验确定


两步试验法:

- (1)初步试验定因素,确定主要因素及取值范围
- (2)由正式试验重点考察其影响,找出其影响规律或关系本例中影响产品硬度合格率的因素有:


加热温度、加热速度、保温时间、冷却速度、出炉温度、加热介质、加热方法、试件材质、试件加工工艺等

试验因素: 加热温度、保温时间、出炉温度

试验条件(固定条件)

2、列出因素及水平表(表1-5)。

表 - 5	因素水平表
---------	-------

展 #	(A)	(B)	(C)
水 平	加热温度	保温时间	出沪温度
1	(A ₁)800°C	(B ₁)6h	(C₁)400℃
2	(A₂)820℃	$(B_2)8h$	(C₂)500℃

2、选择合适的正交表

选择正交表的依据:

- (1)试验水平
- (2)试验因素数
- (3)等水平或不等水平?
- (4) 是否考虑因素间的交互作用?

- (1)对等水平试验,试验因素的水平数应一致,正交表列数应大于或等于因素及所要考察的交互作用所占的列数。
- (2)对于不等水平试验,所选混合型正交表的 某一水平的列数应大于或等于相应水平的因素的 个数。

原则:

尽可能选用小号正交表,以减少试验次数。 至少应有一列空列,否则要安排重复试验

如本例为 3因素 2水平的试验

可选 $L_4(2^3)$ 或 $L_8(2^7)$

因考察3个因素,不考察因素间的交互作用,

根据上述原则,宜选用 $L_4(2^3)$

$(1)L_4(2^3)$						
列号	1	2	3			
1	1	1	1			
2	1	2	2			
3	2	1	2			
4	2	2	1			
列 名	a	b	ab			
区名	1	2				

注:任两列的交互列为另外一列。

$(2)L_{8}($	2 ⁷)						
列号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2
列 名	a	b	ab	c	ac	bc	abc
区名	1		2	L	3	3	

5、 表头设计蕌

表头设计: 试验因素如何安排到所选正交表的各列?

一般每列可安排一个因素,但如何安排更合理?

(1)由列名法安排

基本列(单字母列, a, b, c)→1, 2, 4列排主要因素

- 一级交互作用(双字母列, ab, ac, bc)→排交互作用
- 二级交互作用(多字母列,abc)→剩余因素

 $(1)L_4(2^3)$

列号	1	2	3				
1	1	1	1				
2	1	2	2				
3	2	1	2				
4	2	2	1				
列 名	a	b	ab				
区名	1	,	2				

注:任两列的交互列为另外一列。

 $(2)L_8(2^7)$

, , ,							
列号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2
	a	b	ab	c	ac	bc	abc
区名	1		2	<u></u>		3	

(2)由交互列表安排(附录一)

 $L_8(2^7)$ 交互列表

列号	1	2	3	4	5	6	7
列号()	1	2	J		<i></i>	· · · · · · · · · · · · · · · · · · ·	
	(1)	3	2	5	4	7	6
		(2)	1	6	7	4	5
			(3)	7	6	5	4
				(4)	1 .	2	3
·					(5)	3	2
						(6)	1
							(7)

 $(1)L_4(2^3)$

列号	1	2	3
1	1	1	1
2	1	2	2
3	2	1	2
4	2	2	1

对本例可任意安排,或按因素重要性依次排放

故: 1列(a) →A

2列(b) →B

3列(ab) →C

6、编制试验方案

- (1) 按设计的表头,填入因素及水平,确定各试验组合;
- (2)实施时应严格按照各试验组合进行,不能随意改动;
- (3)试验过程中试验条件应尽量保持一致;
- (4) 若条件充许最好同时进行试验,同时取得试验结果,否则应使试验序号随机化,即采用抽签、掷骰子或查随机数表的方法确定试验顺序;
- (5)一般应安排重复试验,以减少随机误差对试验指标的影响;
 - (6)试验结果填入对应试验指标栏。

表 1 - 2 L4(21)

武 <u>列号</u>	1	2	3
1	1	1]
2	1	2	2
3	2	1	2
4	_2	2	1

44 · · · · · · · · · · · · · · · · · ·	表!	- 5	因素水平表
--	----	-----	-------

" 图 #	(A)	(B)	(C)
以野空	加热温度	保温时间	出炉温度
1	(A ₁)800°C	(B ₁)6h	(C₁)400℃
2	(A₂)820℃	(B ₂)8h	(C₂)500℃

表 1-6 试验方案

因素 试验号	(1) <i>A</i> 加热温度/℃	(2) <i>B</i> 保温时间/h	(3) <i>C</i> 出炉温度/℃
1	(1) 800	(1) 6	(1) 400
2	(1) 800	(2) 8	(2) 500
3	(2) 820	(1) 6	(2) 500
4	(2) 820	(2) 8	(1) 400

二、试验结果处理——极差分析法(直观分析法)结果分析与处理的目的:

- (1)分清各因素及其交互作用的主次顺序
- (2)判断因素对试验指标影响的显著程度
- (3)找出试验因素的优水平和试验范围内的最优组合
- (4)分析因素与试验指标的关系,即变化规律和趋势
- (5)了解因素之间的交互作用情况
- (6)估计试验误差的大小

方法: 极差分析法和方差分析法。

极差分析法(R法):

$$R_{j} = \overline{y}_{jk \max} - \overline{y}_{jk \min}$$

或
$$R_j = \max(\overline{y}_{j1}, \overline{y}_{j2}\cdots) - \min(\overline{y}_{j1}, \overline{y}_{j2}\cdots)$$

 R_j 一极差,反映了第j因素水平变动时试验指标的变动幅度。 R_j 越大,说明该因素对试验指标的影响越大,因此,也就越重要。

 \therefore 由 R_i 的大小可以判断因素的主次。

极差分析法(R法):

方法:

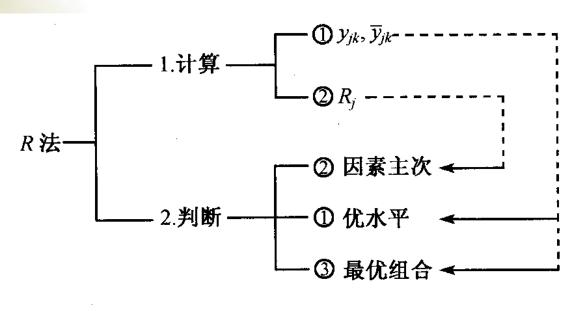


图 1-2 R 法示意图

特点: 计算简便、直观形象、简单易懂

极差分析法的计算和判断可直接在试验方案

扩展表(即试验结果分析表)上进行。

表 1-7 试验结果分析

		• 1		
因素	(1) <i>A</i> 加热温度/℃	(2) <i>B</i> 保温时间/h	(3) <i>C</i> 出炉温度/℃	y _i /%
1	(1) 800	(1) 6	(1) 400	93
2	(1) 800	(2) 8	(2) 500	83
3	(2) 820	(1) 6	(2) 500	44
4	(2) 820	(2) 8	(1) 400	68
${\mathcal Y}_{j1}$	176	137	161	
\mathcal{Y}_{j2}	112	151	127	$\sum_{i=1}^{4} y_i = 288$
$ar{oldsymbol{y}}_{j1}$	88. 0	68. 5	80. 5	i = 1
$ar{oldsymbol{y}}_{J2}$	56. 0	75. 5	63. 5	
R_{j}	32. 0	7. 0	17. 0	
优 水 平	A_1	B_2	C_1	
主次因素		A,C,B		
最优组合		$A_1 B_2 C_1$		

(一)确定因素的优水平和最优水平组合 各因素的优水平分别为: A_1 、 B_2 、 C_1 。 因素的优水平组合(最佳退火工艺条件)为:

$$A_1$$
, B_2 , C_1

- (二)确定因素的主次顺序
 - $R_A > R_C > R_{B'}$
- ∴因素对试验指标影响的主次顺序是*A、C、B* 即加热温度影响最大,其次是出炉温度,而保温时 间的影响最小。

(三)绘制因素与指标趋势图

横坐标: 因素水平

纵坐标: 试验指标的平均值

绘制因素与指标趋势图,又称关系图(T1-3)。

因素指标趋势图可以更直观地说明指标随因素水平的变化而变化的趋势,可为进一步试验时选择因素水平指明方向。

表	1	-7	试验结果分析	Æ
~~	_	•	MANAGE 712 77 77 17	/

			••
因素	(1) A	(2) B	(3) C
号	加热温度/℃	保温时间/h	出炉温度/℃
1	(1) 800	(1) 6	(1) 400
2	(1) 800	(2) 8	(2) 500
3	(2) 820	(1) 6	(2) 500
4	(2) 820	(2) 8	(1) 400
y_{j1}	176	137	161
y_{j2}	112	151	127
\bar{y}_{j1}	88. 0	68. 5	80. 5
\bar{y}_{J2}	56. 0	75. 5	63. 5
R_{j}	32. 0	7. 0	17.0
优水平	A_1	B_2	C_1
主次因素		A,C,B	
最优组合		$A_1 B_2 C_1$	

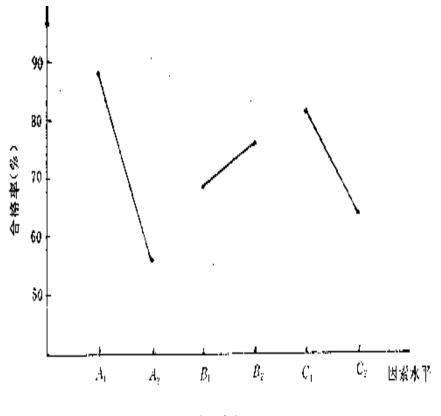


图 1 一 3 一试验因素与指标趋势图

(四)、说明与讨论蕌

- 1.结论仅在试验范围内有效,一般不能外推,但可进一步缩小范围,使最优组合→最优点
 - 2. 最优组合 A_1 、 B_2 、 C_1 并不在部分实施的4个试验之中
- 。表明优化结果不仅反映了已做的试验信息,而是全面试验
- 信息。对最优组合,一般应做验证性试验。
 - 3. 实际中,最优组合有一定的灵活性。

对主要因素,选最优水平;

对次要因素,应权衡利弊,综合考虑,(如生 产率、成本、劳动条件等)来选取水平。

如因素B是次要因素,考虑到缩短保温时间,可以节约用电,提高生产率,所以也可选:

 A_1 , B_1 , C_1

为最优退火工艺。

例1-3 为提高山楂原料的利用率,某研究组研究了酶法液化工艺制造山楂清汁,拟通过正交试验寻找酶法液化工艺的最佳工艺条件。

(一)确定试验指标

- ∵山楂原料的利用率↑
- ∴试验指标: Y→液化率

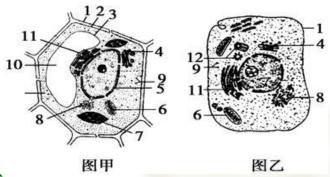
液化率Y=[(果肉重-液化后残渣重)/果肉重]

 $\times 100\%$

液化率 ↑, 原料利用率 ↑

(二)选择试验因素

影响液化率的因素:


果肉加水量、加酶量

酶解温度、酶解时间

山楂品种、果肉破碎度

原料PH值、果胶酶的种类等。

选4个主要因素,进行四因素正交试验

分别以A、B、C、D表示,其余因素作为试验条件处理。

(三)选取试验因素水平,列出因素水平表。蕌

根据专业知识,四个因素均取三个水平值。因素水平表如表1-10所示。

表1-10 因素水平表

水水	加水量 (ml/100g) A	加護量 (mi/)100g) B	海解温度 企业(で) C	酵解时间 (A) D	
1	10	1	20	1.5	
2	50	4	35	2- 5	
	90	7	50	3_ 5	

(四)选择合适的正交表蕌

本例是四因素三水平试验,不考虑因素的交互作用,故选用正交表 L_9 (3^4)。蕌

(五)表头设计和编制试验方案,见表1-11。

表 1-11 试验方案及结果分析表

成 发 全	А (1)	<i>B</i> (2)	(3)	D (4)
1	(1)10	(t)	(1)20	(1)3.5
2	(1)10	(2)4	(2)35	(2)2.5
3	(1)10	(3)7	(3)50	(3)3.5
4	(2)50	(1)1	(2)35	(3)3.5
5	(2)50	(2)4	(3)50	(1)1.5
. 6	(2)50	(3)7	(1)20	(2)2.5
7	(3)90	(1)1	(3)50	(2)2, 5
8	(3)90	(2)4	(1)20	(3)3,5
9	(3)90	(3)7	(2)35	(D1.5

(六)试验结果分析

见表1-11。

表 1-11 试验方案及结果分析表

成金	Л (1)	B (2)	C (3)	D (4)	<i>y</i> (
1	(1)10	(1)	(1)20	(1)7.5	0				
2	(1)10	(2)4	(2)35	(2)2.5	17				
3	(1)10	(3)7	(3)50	(3)3.5	24				
4	(2)50	\mathbf{m}	(2)35	(3)3.5	12				
5	(2)50	(2)4	(3)50	(1)1.5	47				
. 6	(2)50	(3)7	(1)20	(2)2.5	28				
7	(3)90	(1)1	(3)50	(2)2,5	1				
8	(3)90	(2)4	(1)20	(3)3,5	18				
5	(3)90	(3)7	(2)35	(1)1.5	42				
. ул	41	13	46	89					
932	87	82	71	.46					
Yis	61	74	72	54					
انْرُخَ	13.7	4.3	15. 3	29. 7					
	29, 0	27. 3	23. 7	15.3	$\sum^{9} = 189$				
Va	20.3	31, 3	24.0	18	$\sum_{i=1}^{r} = 189$				
R_j	15.3	27	8. 7	14.4					
- <u>优</u> 水平	A,	B ₃	C,	D_1].				
主次因素	主次因素· B、A、D、C								
最优组合		A_2B_3	$C_{i}D_{i}$		<u></u>				

一章 试验设计

(七)绘制因素与指标趋势图。(T1-4)

加水量 加騰量 海解温度 (ml/100g) (ml/100g) 2 gg (で) A B 10 ı 50 4 90 3 30} 鐵化掛八名 20 10 D. 因業水 C_i D_3 B_1 B, D_1 A_1

表 1 - 10 因素水平表

酶解时间 (A) D

1.5

2.5

3.5

20

35

50

§ 1.4 有交互作用的正交设计蕌

一、交互作用的概念及处理原则蕌

(一)概念蕌

交互作用:因素之间联合搭配对指标的影响

AXB — 一级交互作用

AXBXC —二级交互作用

二级及以上的交互作用统称为高级交互作用

在线性回归中:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3$$

其中: x_1x_2 x_1x_3 ··· --交互作用

现以例1-1说明:

y (Kg)	$N_I = 0 \text{ (Kg)}$	$N_2 = 4 (\mathrm{Kg})$
$P_I = 0 \text{ (Kg)}$	200	225
$P_2 = 6 \text{ (Kg)}$	215	280

处理组合	亩产量	亩增产	•	因素单独作用	交互作用
$P_I N_I$	200	0			
P_1N_2	225	25	=	25	0
P_2N_1	215	15	=	15	0
P_2N_2	280	80	=	40	40

(二)处理原则蕌

按因素处理。在正交表中安排交互作用列来考察。 交互作用与因素不同:

- (1)交互作用列不影响试验方案及其实施。
- (2)一个交互作用不一定占一列,而是占(b-1)列

即:2水平占一列

3水平占2列、二级占4列

可见b 越多、交互作用所占列越多, 试验次数 1

一般的处理原则是:

忽略高级交互作用

有选择地考察一级交互作用

若计入交互作用,优选2水平表

二、试验方案设计方法蕌

例1-4 考察拖拉机在不同作业速度下某些部件对驾驶员耳旁噪声的影响。拟定的试验因素及其水平如表1-8所列,并要求考虑*AXB、AXC*的影响。试验指标为耳旁噪声,且指标值越小越好。

试验因素

水平菜	速度 A(Km/h)	驾驶室 B	轮胎 ℃	风 扇
1		开式	通用加宽	改进型
2	□档	闭式	越野	普通型

(一)试验方案设计

1. 确定试验指标

本例试验指标为耳旁噪声,且要求试验指标越小越好。 采用噪声计测量。

2. 确定因素, 选水平, 制定因素水平表。

如表1-12所示。

表 1-8 因素水平表

因素	A	В	C	D
水平	速度/(km・h ⁻¹)	驾驶室	轮胎	风扇
1	Ⅲ挡	开式	通用加宽	改进型
2	Ⅱ挡	闭式	越野	普通型

一章 试验设计

3. 选正交表

A、B、C、D、 $A\times B$ 、 $A\times C$ 各占一列,需六列显然 $L_s(2^7)$ 正交表最合适。

4. 表头设计

把交互作用按因素对待, 按交互

列表配列:

- (1) 按交互列表配,见附录一
- (2) 按列名法配列

$(2)L_{8}($	2 ⁷)						
列号试验号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2
列 名	<i>a</i>	<i>b</i>	ab	<i>c</i>	ac	bc	abc
区名	1		2		3	3	·

配列原则:

- (1)避免混杂,即同列中安排两个以上交互作用,如在 $L_8(2^7)$ 表中第1列上有多个交互作用。
- (2)优先安排主要因素、后安排次要因素。
- (3)若列数不够,允许一级交互作用混杂或次要因素与高级交互作用混杂,但不允许因素与一级交互作用混杂。

如表1-9是不允许的 而表1-10表头设计是可以的。

表1-9 四因素表头设计1

因素	Α	$B{ imes}C$	$A { imes} B { imes} C$	В	$A{ imes}B$	$A{ imes}D$	$A{ imes}C$
			$B{ imes}D$			C	D
列号	1	2	3	4	5	6	7

表1-10 四因素表头设计2

因素	f_D A $ imes$ B $ imes$ C	${}^{B imes C}_{A imes D}$	Α	$\begin{array}{c} A \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	В	$\begin{array}{c} A \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	С
列号	1	2	3	4	5	6	7

遵循上述原则,本例表头设计如表1-11所示。

表1-11 试验方案表头设计

因素	Α	В	$A{ imes}B$	С	$A{ imes}C$	B×C	${\mathsf D}^{\mathsf D}$
列号	1	2	3	4	5	6	7

(2	١	ī	1	2^7)
(~	,	L_{Q}	١	_	1

列号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2
列 名	a	<i>b</i>	ab	<i>c</i>	ac	bc	abc
区名	1		2	<u></u>	3	3	

一章 试验设计

5. 编制试验方案蕌

表头设计完后将正交表安排有因素各列的水平数字, 换成相应因素的具体水平值,即构成试验方案。

安排交互作用的各列对试验方案及试验的具体实施 不产生任何影响,为了便于试验的顺利实施,通常将试 验方案单独列出,本试验方案见表1-12。

表 1-12 拖拉机噪声试验方案表

因素	(1) A	(2) B	(4) C	(7) D	
试验号	速度	驾驶室	轮胎	. 风 扇	y
1	(1)Ⅲ挡	(1)开式	(1)普通加宽	(1)改进型	
2	(1)Ⅲ挡	(1)开式	(2)越野	(2)普通型	
3	(1)Ⅲ挡	(2)闭式	(1)普通加宽	(2)普通型	
4	(1)Ⅲ挡	(2)闭式	(2)越野	(1)改进型	
5	(2) Ⅱ挡	(1)开式	(1)普通加宽	(2)普通型	
6	(2) Ⅱ挡	(1)开式	(2)越野	(1)改进型	
7	(2) Ⅱ挡	(2)闭式	(1)普通加宽	(1)改进型	
8	(2) II 挡	(2)闭式	(2)越野	(2)普通型	

(二)试验结果分析蕌

将试验结果填入指标栏内,然后利用极差法进行计算和判断。

交互作用列按因素列看待

排主次顺序

确定因素优水平

确定优搭配

试验结果分析如表1-13所列,由表可见:

表 1-13 试验结果分析表

因素	(1)A	(2)B	$(3)A \times B$	(4)C	$(5)A \times C$	(6)	· (7)D	y_i/dB	$y_i - 90/dB$
试验号									
1	1	1	1	1	1	1	1	92	2
2	1	1	1	2	2	2	2	98	8
3	1	2	2	1	1	2	2	94	4
4	1	2	2	2	2	1	1	97	7
- 5	2	1	2	1	2	1	2	94	4
6	2	1	2	2	1	2	1	93	3
7	2	2	1	1	2	2	1	86	-4
8	2	2	1	2	1	1	2	91	11
<i>y_j</i> 1	21	17	7	6	10	14	8	8	
<i>y_j</i> 2	4	8	18	19	15	11	17	$\sum_{i=1}^{3} (y_i - y_i)$	90) = 25
\bar{y}_{j1}	5. 25	4. 25	1.75	1.50	2. 50	3.50	2.00	<i>t</i> - 1	
\bar{y}_{j2}	1. 00	2. 00	4. 50	4. 75	3.75	2. 75	4. 25		
R_{j}	4. 25	2. 25	2.75	3. 25	1. 25	0.75	2. 25		
优水平	A_2	B_2		C_1			D_1		
主次因素			A, C ,	$A \times B$,	$\frac{B}{D}$, $A \times C$	C		最	优组合
优搭配				A_2B_2					$B_2C_1D_1$

优水平	A_2	B_2	C_1	D_1	
主次因素			$A, C, A \times B, \frac{B}{D}, A \times C$		最优组合
优 搭 配			A_2B_2		$A_2B_2C_1D_1$

试验结果分析如表1-13所列,由表可见:

A、C为主要影响因素,可直接用其优水平 A_2 、 C_1 对D,因不计交互作用,直接用其优水平 D_1 对B,难以确定,通常用二元表进行分析,确定优搭配。

二元表是交互作用显著的两因素各种搭配下,对应试验指标平均值列成的表,它是交互作用的计算工具,如表1-14。

表 1-14 二元表

A B	B_1	B_2
A_1	$\frac{2+8}{2}=5$	$\frac{4+7}{2} = 5.5$
A_2	$\frac{4+3}{2} = 3.5$	$\frac{-4+1}{2} = -1.5$

表 1-14 二元表

B A	B_1	B_2
A_1	$\frac{2+8}{2}=5$	$\frac{4+7}{2} = 5.5$
A_2	$\frac{4+3}{2} = 3.5$	$\frac{-4+1}{2} = -1.5$

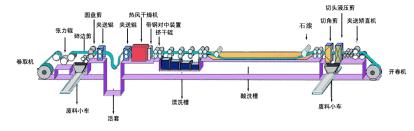
以
$$A_1 \times B_1$$
为例,其中 $y_{A_1 \times B_1} = \frac{2+8}{2}$

 $2+8--A_1\times B_1$ 组合的试验指标之和

 $2--A_1 \times B_1$ 组合在试验指标中出现的次数(隐藏重复数)

因为噪声指标越小越好,故应取 $A_2 \times B_2$,即B取 B_2

表 1-13 试验结果分析表


因刻试验号	- 11	(1)A	(2)B	$(3)A \times B$	(4)C	$(5)A \times C$	(6)	· (7)D	y_i/dB	$y_i - 90/d$
1		1	1	1	1	1	1	1	92	2
2		1	1	11	2	2	2	2	98	8
3	il	1	2	2	1	1	2	2	94	4
4		1	2	2	2	2	1	1	97	7
- 5		2	1	2	1	2	1	2	94	4
6		2	1	2	2	1	2	1	93	3
7		2	2	. 1	1	2	2	1	86	-4
8		2	2	1	2	1	1	2	91	1

故优组合应为 $A_2B_2C_1D_1$,恰为第7号试验组合。

			7	長 1-13	试验结果	分析表			
因素	(1)A	(2)B	$(3)A \times B$	(4)C	$(5)A \times C$	(6)	(7)D	y_i/dB	$y_i - 90/d$
1	1	1	1	1	1	1	1	92	2
2	1	1	1	2	2	2	2	98	8
3	1	2	2	1	1	2	2	94	4
4	1	2	2	2	2	1	1	97	7
- 5	2	1	2	1	2	1	2	94	4
6	2	1	2	2	1	2	1	93	3
7	2	2	, 1	1	2	2	1	86	-4
8	2	2	1	2	1	1	2	91	1
y_{j1}	21	17	7 ·	6	10	14	8	8	
y_{j2}	4	8	18	19	15	11	17	$\sum_{i=1}^{n} (y_i - y_i)$	90) = 25
\bar{y}_{j1}	5. 25	4. 25	1.75	1. 50	2. 50	3. 50	2.00		
\bar{y}_{j2}	1.00	2. 00	4. 50	4. 75	3.75	2. 75	4. 25		
R_{j}	4. 25	2. 25	2, 75	3. 25	1. 25	0. 75	2. 25		
优水平	A_2	B_2		C_1			D_1		
主次因素			A, C ,	$A \times B$,	$\frac{B}{D}$, $A \times C$	C		最	优组合
优搭配				A_2B_2				A_2	$B_2C_1D_1$

例1-5 某厂的一种零件在镀锌前需用酸洗液除锈,为了提高除锈效率(缩短酸洗时间)决定试验寻找最佳酸洗液配方。

酸洗线工艺流程图 长

长沙市明宇换热器厂制

准备采用正交设计法,根据以往的经验,确定考察的因素水平如表1-20所示。并希望了解它们之间的所有一级交互作用。

1. 确定试验指标

确定试验指标为酸洗时间,且试验指标越小越好。

1 - 20

2. 确定因素、选水平、制定因素水平表。

	Apr 1 - 21	/ 构象小寸衣	
一個	A	В	С
小平寒	$H_2SO_4(g/l)$	$CH_{\bullet}N_{z}S(g/l)$	洗涤剂(g/l)
1	300	12	70
2	200	4	100

3. 选正交表

因为 $A \times B$ 、 $B \times C$ 、 $A \times C$ 占3列,连同试验因素A、B、C,故应占正交表6列,所以选正交表 L_8 (27)较合适。

4. 表头设计 如表1-21所示。

	麦 1	— 21	表头设计
--	-----	-------------	------

列号	1	2	3	4	5	6	7
因素	A	В	$A \times B$	C	$A \times C$	$B \times C$	

- 5.编制试验方案 如表1-22所示。
- 6. 试验结果分析 如表1-23。

表 1 - 22 试验方案表

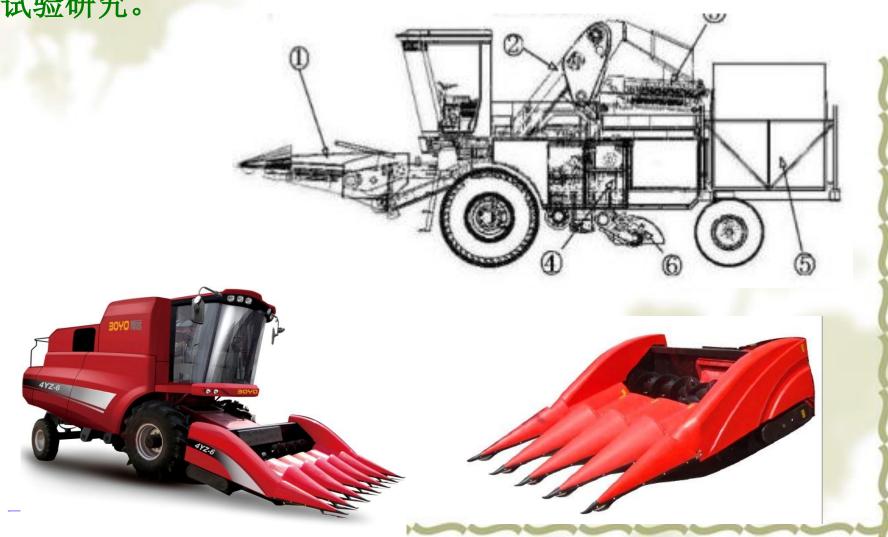
试验号	A(1)	B(2)	C(4)			
1	(1)300	(1)12	(1)70			
2	(1)300	(1)12	(2)100			
3	(1)300	(2)4	(1)70			
4	(1)300	(2)4	(2)100			
5	(2)200	(1)12	(1)70			
6	(2)200	(1)12	(2)100			
7	(2)200	(2)4	1)70			
8	(2)200	(2)4	(2)100			

表 1 - 23 试验结果分析表

试验号	(1) A	(2) B	(3) A × B	(4) C	$A \times C$	(6) B × C	(7)	<i>y_i</i> (mm)
1	1	1	1	1	1	1	1	30
2	1	1	1	2	2	2	2	32
3	1	2	2	1	1	2	2	20
4	1	2	2	2	2	1	1	25
5	2	1	2	1	2	1	2	32
6	2	1	2	2	1	2	1	25
7	2	2	1	1	2	2 .	1	17
8	2	2	1	2	1	1	2	20
y_{i1}	107	119	. 99	99	95	107	97	
У _{ј?}	94	82	102	102	106	94	104	
$\widetilde{\mathbf{y}}_{j_1}$	26. 75	29. 75	24. 75	24. 75	23. 75	26. 75	24. 25	
y _{jž}	23.50	20. 50	25.50	25. 50	26. 50	23.50	26. 00	$\sum_{i=1} y_i = 20$
R_j	3. 25	9. 25	0. 75	0.75	2. 75	3. 25	1. 75	
优水平	A_2	B_2	!	C_1				
主次因素 $B \cdot A/B \times C \cdot A \times C \cdot C/A \times B$								最优组合
优搭配			$A_2B_2C_1$					

§ 1.5 混合型正交表的试验设计及分析

不等水平设计的三种方法:


混合型正交表

拟水平法

拟因素法

$$c \le c_1 + c_2$$

例1-9 为减少玉米收获机械的收获损失,对其摘穗装置进行试验研究。

选定的因素水平如表1-15所示,交互作用均不考虑。试验指标为玉米损失率,当然越小越好。

表 1-15 玉米摘穗试验因素水平表

因素	A	В	C	D
水平	摘辊速度/(r・min ⁻¹)	辊倾角/(°)	喂送速度/(m·s ⁻¹)	摘辊型式

(一)试验方案设计

- 1. 确定试验指标。根据要求选玉米破损率为试验指标,且试验指标越小越好。
 - 2. 选因素及其水平,列因素水平表,如表1-33所示。

	表 1-15	土米摘穗试验	占素水 半表	3
因素	A	В	c	D
水平	摘辊速度/(r・min ⁻¹)	辊倾角/(°)	喂送速度/(m・s ⁻¹)	摘辊型式
1	700	40	1.6	甲
2	650	35	1.8	乙
3	600		_	
4	750	<u> </u>	<u> </u>	_

3. 选正交表。

港本例是 4×2^3 因素试验,A是重点考察的因素,显然选用混合型表 $L_8(4\times2^4)$ 较好。

4、表头设计蕌

A因素→第1列,因素B、C、D可任意安排在其余列上。

5、编制试验方案 如表1-16所示。

试验方案 $L_8(4\times2^4)$ 如表1-16所示。

				-
因素	(1)A 摘辊速度/(r・min ⁻¹)	(2)B 辊倾角/(°)	(3) <i>C</i> 喂送速度/(m・s ⁻¹)	(4)D 摘辊型式
1	(1) 700	(1) 40	(1) 1.6	(1) 甲
2	(1) 700	(2) 35	(2) 1.8	(2) 乙
3	(2) 650	(1) 40	(1) 1.6	(2) 乙
4	(2) 650	(2) 35	(2) 1.8	(1) 甲
5	(3) 600	(1) 40	(2) 1.8	(1) 甲
6	(3) 600	(2) 35	(1) 1.6	(2) 乙
7	(4) 750	(1) 40	(2) 1.8	(2) 乙
8	(4) 750	(2) 35_	(1) 1.6	(1) 甲

(二)试验结果分析

注意:

- 1. 由于水平不等,各列指标平均值计算方法不再相等。
- 2. 因为水平隐藏重复次数不等,水平取值范围也可能差异较大,因此对极差R就有一定影响。通常,为了消除这种影响,用R_i来比较因素的主次。

$$R'_j = d_b \cdot R_j$$

式中d_h为Rj的折算系数,可由表1-17查到。

					•				
b	2	3	4	5	6	. 7	8	9	10
d_b	0.71	0.52	0.45	0.40	0. 37	0. 35	0. 34	0.32	0. 31

表 1 - 35 折算系数表

由R'j的大小可判定主次因素。

具体试验结果计算分析见表1-34所示。

表 1-16 玉米摘穗试验结果分析表

因素	(1)A	(2)B	(3)C	(4)D	y _i /%
试验号	 摘辊速度/(r・min ⁻¹)	辊倾角/(°)	喂送速度/(m・s - 1)		
1	(1) 700	(1) 40	(1) 1.6	(1) 甲	0. 14
2	(1) 700	(2) 35	(2) 1.8	(2) 乙	0. 17
3	(2) 650	(1) 40	(1) 1.6	(2) 乙	0. 25
4	(2) 650	(2) 35	(2) 1.8	(1) 甲	0.31
5	(3) 600	(1) 40	(2) 1.8	(1) 甲	0.41
6	(3) 600	(2) 35	(1) 1.6	(2) 乙	0. 34
7	(4) 750	(1) 40	(2) 1.8	(2) 乙	0. 11
8	(4) 750	(2) 35	(1) 1.6	(1) 甲	0.08
$\frac{\overline{y}_{j1}}{\bar{y}_{j1}}$	0. 155	0. 228	0. 202	0. 235	8
у _, 11 - 	0. 280	0. 225	0. 250	0. 217	$\sum_{i=1} y_i = 1.81$
\bar{y}_{β}	0. 375	——			L
у _ј ;	0. 095		_		
R_j	0. 280	0.003	0.048	0.018	
R'_{i}	0. 126	0.002	0. 034	0.013	
优水平	A ₄	B_2	C_1	D_2	最优组合
主次因素		A,C,I	D ,B		$A_4B_2C_1D_2$

§ 1.6 正交试验设计常用方法概述蕌

一般试验: 因素多、水平不等, 又要考察交互作用

表 1-18 设计方法的不同条件比较

方法 条件	基本方法	有交互作用的设计法	直接用混合表法	一般方法
水平数	等	等	不等	不等
交互作用	无	有	无	有

灵活应用正交表的设计方法: 蕌

1、改造正交表:

并列法、赋闲列法、部分追加法 裂区法、套表法等。蕌

2、调整因素及其水平:

拟水平法、组合因素法直积法、直和法等。

3、综合以上两个种方法:拟因素法。

§ 1.7 改造正交表设计法蕌

一、并列法蕌

将b水平正交表的任意两列合并,同时划去相应的交互作用列,排成一个b²水平的新列,这种方法称为并列法。

如表1-19,在 $L_8(2^7)$ 正交表中将1、2两列合并,给每种组合一个新的水平数字

- $(1, 1) \rightarrow 1$
- $(1, 2) \rightarrow 2$
- $(2, 1) \rightarrow 3$
- $(2, 2) \rightarrow 4$

构成一个四水平的新列,同时按照交互列表把1、2列的交互作用列第3列划去,就并列成 L_8 (4×2⁴)正交表。显然,新的正交表是具有正交性的。

表 1-19 $L_8(2^7)$ 并列成 $L_8(4 \times 2^4)$

原列号	1	2			3	4	5	6	7
试验号				1	划去	2	3	4	5
1	1	1	→	1	1	1	1	1	1
2	1	1	→	1	1	2	2	2	2
3	1	2	\rightarrow	2	2	1	1	2	2
4	1	2	\rightarrow	2	2	2	2	1	1
5	2	1	→	3	2	1	2	1	2
6	2	1	→→	3	2	2	1	2	1
7	2	2	 →	4	1	1	2	2	1
8	2	2	\rightarrow	4	1	2	1	1	2

并列法特点:

将多水平因素安排到少水平的标准表上,并且可 以考察交互作用。

并列法交互作用列占的列数

一个b水平因素和一个k水平因素间的交互作用应 点列数为:

所占列数=(b-1)(k-1)

例1-5 在试验中,欲考察四水平因素 A,二水平因素 B、 C、 D及交互作用 $A \times B$ 、 $A \times C$ 、 $B \times C$,试列出表头设计。

选用二水平正交表 A因素占 3列 B、C、D各1列占 3列 AXB、AXC各占3列 6列 BXC占 1列 合计 13列

表 1-20 41 × 23 试验表头设计

因素	A	В	$A \times B$	<u>C</u>	$A \times C$	$B \times C$	D	
列号	1 2 3	4	5 6 7	8	9 10 11	12	13	14 15

二、赋闲列蕌

几个交互作用放在同一列并使该列"闲"起来,该列 就称为赋闲列

如L₈(2⁷), 2、3列, 4、5列, 6、7列→第1列

表头设计时同时放于第1列,则该列即为<mark>赋闲列</mark>,如表 1-40所示

L₈(2⁷)中,若将1、2、3列和1、4、5列分别并列成四水平列,则第1列即为赋闲列

ᆲᇎᇎᇎᇎ

			表 1-21	呱內列 :	表头设订 —————			<u></u>	
 		$E \times F$							
Þ	素	$C \times D$	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	E	F	
		$A \times B$			<u>-</u>				
	刊号	1	2	3	4	5	6	7	

L₈(27)交互列表

	1	2	3	4	5	6	7
1	(1)	3	2	5	4	7	6
2		(2)	1	6	7	4	5
3			(3)	7	6	5	4
4				(4)	1	2	3
5					(5)	3	2
6						(6)	1
7							(7)

特点:

- (1) 可减少不起作用的列数,提高利用率,
- (2)考察多个因素,但不增加试验号数。
- (3) 只适用于二水平标准表,按交互列表设计
- (4)结果分析时,赋闲列既不能考察交互作用,也不能 考察试验误差。

课堂练习

试进行4²×2²因素试验的表头设计,A,B为4水平因素,C,D为2水平因素,所有交互作用可忽略。

- (1) 利用并列法和赋闲列法
- (2) 可将 $4^2 \times 2^2$ 试验安排至 L_8 (27)
- (3) 进行表头设计
- (4) 列出试验方案

	1	2	3	4	5	6	7
1	(1)	3	2	5	4	7	6
2		(2)	1	6	7	4	5
3			(3)	7	6	5	4
4				(4)	1	2	3
5					(5)	3	2
6						(6)	1
7							(7)

三、部分追加法蕌

追加法: 试验中将某一因素添加若干水平,同时追加试验点,全面考察该因素作用。

设计方法:将若干个小号正交表合并成一个大号正交表,既能适应试验进行过程中的实际需要,又能解决不等水平的因素试验,大大减少试验次数。

如设计3 × 2²,A为三水平,B、C为二水平

- (1) 不计 A_3 ,可用 $L_4(2^3)$ 安排,称为基本表
- (2)再用A₃代替基本表中A₁或A₂,新增L₄(2³) 称为追加表

表 1-22 追加法的基本表

因素	(1) A	(2) B	(3) C	y_i
	$(1)A_1$	$(1)B_1$	$(1) C_1$	${\mathcal Y}_1$
2	$(1)A_1$	$(2)B_2$	$(2)C_2$	y_2
3	$(2)A_2$	$(1)B_1$	$(2)C_2$	y_3
4	$(2)A_2$	$(2)B_2$	$(1)C_1$	<i>y</i> ₄

表 1-23 追加法的追加表

因素	(1) A	(2) B	(3) C	y_i
	$(1)A_3$	$(1)B_1$	$(1)C_1$	y_1'
2	$(1)A_3$	$(2)B_2$	$(2) C_2$	y_2'
3	$(2)A_2$	$(1)B_1$	$(2)C_2$	y_3'
4	$(2)A_2$	$(2)B_2$	$(1)C_1$	<i>y</i> ₄

合并两表 划去3、4行

表 1-24 追加法试验方案及结果分析

		<u> </u>		N W - H > N > 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
试验号	因素	(1) A	(2) B	(3) C	y_i	y_i'
	基本 1	(1) A_1	$(1) B_1$	(1) C ₁	y_1	y_1
实际试验	试验 2	$(1) A_1$	(2) B_2	$(2) C_2$	y_2	y_2
总次数	次数 🔾 3	(2) A_2	(1) B_1	(2) C ₂	<i>y</i> ₃	$2y_3$
M = a + n	$a = 4 \bigcirc 4$	(2) A_2	(2) B_2	$(1) C_1$	y_4	2y ₄
=6	追加 5 次数	(1) A_3	(1) B_1	(1) C ₁	$y_5 = y_1'$	y_5
	n=2 6	$(1) A_3$	(2) B_2	$(2) C_2$	$y_6 = y_2'$	y_6
ā	- Y j1	$\frac{y_1+y_2}{2}$	$\frac{y_1 + 2y_3 + y_5}{4}$	$\frac{y_1+2y_4+y_5}{4}$		_
ÿ	- (p	$\frac{2y_3 + 2y_4}{4}$	$\frac{y_2 + 2y_4 + y_6}{4}$	$\frac{y_2 + 2y_3 + y_6}{4}$		
ÿ	΄β	$\frac{y_5 + y_6}{2}$			•	

四、裂区法蕌

裂区法:将正交表的列按一定规律分区,把试验因素按其不同情况分别安排到相应的区中进行设计。

正交表分区规律: 在标准表的列分为r个区,从小到大分为整区、裂区、小裂区、小小裂区等。

利用列名法可以直接安排交互作用,而不必借助交互列表。

				衣 1-23	我区小总仪			
	号	1	2	3	4	5	6	7
	名	a	b	ab	c	ac	bc	abc
p	r-1	1	i		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>, </u>	3	_ .
区	号	1		2		als 2	र्मा । ज	
区	名	整区	著	是区		小	製区 ————————————————————————————————————	

裂区设计时,通常将更换水平困难、次要因素、需要时空范围大的因素等放在整区上或小裂区上,以区别对待,保证重点,减少水平更换次数,缩短试验周期。

裂区法可以和并列法和赋闲列法及拟水平法等综合使用, 解决复杂的不等水平多因素试验问题。

				表 1-25	裂区示意表	ξ		
列	号	1	2	3	4	5	6	7
	名	a	b	ab	c	ac	bc	abc
, ,		lJ	[L			
X	号	1		2		-	3	
区	名	整区	秦	拉区		小乳	製区	
	1-1	IE E Z						

 $L_8(2^7)$

整区上或小裂区:

更换水平困难

次要因素

需要时空范围大

的因素

表 1-3 $L_4^{(2^2)}$ 正交表

V =1.03						···· =	
列号	i	2	3	4	5	6	7
1	1	1	1	1	1		1
2	1	1	1	2	2	2	2
3	ŀ	2	2	1	1	2	2
4	l	S	2	2	2	1	1
5	2	1	2	l	2	1	2
S	2	1	2	2	1	2	1
7	2	2	I	1	2	2	1
8	2	2	l 	2]	1	2
列名	a b	<u>a</u>	þ	<u>c</u>	érc	bc_	abe
区名	3	2			-	1	

例1-6 试进行4²×2²因素试验的表头设计。A,B为4水平因素且二次效应可忽略,C,D为2水平因素且C因素水平更换困难,所有交互作用可忽略。

利用并列法和赋闲列法

可将 $4^2 \times 2^2$ 试验安排至 $L_8(2^7)$

表 1-26 4² × 2² 试验表头设计

因	素	С	赋闲	D		\overline{A}		В
列	号	1	2	3	4	6	5	7
列	名	a	b	ab	<i>c</i>	bc	ac	abc
区	名	整区	裂!	×		小等	製区	

L₈(27)交互列表

	1	2	3	4	5	6	7
1	(1)	3	2	5	4	7	6
2		(2)	1	6	7	4	5
3			(3)	7	6	5	4
4				(4)	1 (2	3
5					(5)	3 (2
6						(6)	1
7							(7)

五、套表法蕌

套表法: 在一个较大的正交表中套几个小正交表,以小正交表的试验作为一个个阶段进行序贯试验。

两种情况: 在考察设计时有意识地将一个正交表的试验 套成几个小正交表。如将 $L_{16}(2^{15})$ 表套成 2^{15} 人表。如将 $L_{8}(2^{7})$ 表,分两个阶段做试验。

套表设计条件: 试验因素数不能超过小正交表列号加1

在试验过程中,原设计的某小正交表试验已取得一些成果,尚需进一步试验研究,经过若干个小正交表试验。验,逐步套成大正交表试验。

在套表过程中,可以将某因素增加若干个水平,如将 $L_4(2^3)$ 套成 $L_{12}(6\times 2^2)$;也可以增加一个因素,如将 $L_9(3^4)$ 套成 $L_{18}(2\times 3^7)$ 。

这种由小表逐步套成大表的套表设计,既可以通过对各小正交表试验结果的分析,判明有无交互作用,也可以扩大正交表的成果,获得更多的信息和优化成果。

1、用列名法或交互列表安排套表

- (1)确定单列名列号,如1、2、4、7列,1列→新增列
- (2)由2、4、7列前4号→ L₄(23),基本表
- (3)由2、4、7列后4号→ L₄(2⁸),套表1

表 1-44 列	名法套表
----------	------

试验 号	(2)A	(4) <i>B</i>	(7)C	(1)D	小正交表
1	1	1 /	1	1	固定条件
2	1.	2	2	1	上4(2³)
3	2	1	2 /	1	(基本表)
4	2	2	1 /	1	
5	1	. 1	2	2	补充条件
6	1	2	1 /	2	$L_4(2^3)$
7	2	1	1	2	(套表1)
8	2	2	2 .	2	
列 名	. b	с	abc	а	

2、映象法

由基本表 (原象表) 可推出套表 (映象表)

对非基本列 (多字母列)

规则 二水平:加1模2同余

三水平:加1模3同余

表 1-45 加一同余运算表

原象表字码	模	加数	映象表字码
1	2	1	2
2	2	1	1
1	3	1	2
2	3	1	3
3	3	3	1

表 1 - 46 三水平映象法套表设计

	\$4. T	20 <u> </u>	100 Me 124 Tax	3~4~ ΓΙ	
武验号	2	5	8	11	小正交表
1	1	1	1	1	-
2	, 1	2	2	2	<u>.</u>
3	1	3	3	3 .	·
4	2	1	2	3	$L_9(3^4)$
5	2	2	3	1	原象表
6	2	3	1	2	·
7	3	1	3	2	·
8 .	3	2	1	3	
. 9	3	3	2	1	
10	1	1	2 ·	2	
11	1	2	3	3	:
12	1	3	1	1	-
13	2	1	3	B	
14	2	2	1	2	$L_{9}(3^{4})$
15	2	3	2	2 3 3	映象表
16	3	1	1	3	\$
17	3	2	2	1	
18	3	3	3	2	

一章 试验设计

 $L_{27}(3^{13})$

§ 1.8 调整试验因素及拟水平设计法

一、拟水平法

对水平少的因素,增加水平(虚拟水平)

不等水平试验→ 等水平试验

例1-7

因素水平123实际水平12(1)

表 1-30 试验因素水平表

大平	A 操作方式	<i>B</i> 班组	<i>C</i> 产品种类	
1	I	甲	大	
2	I	乙	中	
3		丙	小	

表 1-31 试验方案及结果分析

因素	(1) A 操作方式	(2) <i>B</i> 班 组	(3)	(4) <i>C</i> 产品种类	产品不合格率/%
试验号			1	(1) 大	1. 20
1	(1) I	(1) 甲			
2	(1) I	(2) 乙	2	(2) 中	1. 10
3	(1) I	(3) 丙	3	(3) 小	2. 30
4	(2) II	(1) 甲	2	(3) 小	1. 40
5	(2) I	(2) 乙	3	(1) 大	3. 40
6	(2) I	(3) 丙	1	(2) 中	4. 50
(7)	(3) I	(1) 甲	3	(2) 中	1. 20
(8)	(3) I	(2) 乙	1	(3) 小	0. 80
(9)	(3) I	(3) 丙	2	(1) 大	3. 10
\bar{y}_{j1}	1.53	1. 27	2. 17	2. 57	$\sum_{i=1}^{9} y_i = 19$
\bar{y}_{j2}	3. 10	1.77	1. 87	2. 27	<i>i</i> = 1
\tilde{y}_{j3}	1.70	3. 30	2. 30	1. 50	
R_{j}	1.57	2. 03	0. 43	1. 07	

注意: 结果处理中, 因为存在试验误差

理论 $\overline{y}_{j1} = y_{j3}$ 实际 $\overline{y}_{j1} \neq y_{j3}$

二、组合法蕌

把两个水平较少的因素"组合"成一个水平较多的因素 ,安排到多水平正交表中去的设计方法,称为组合因素,简 称为组合法。

C
 D
 CD
 结果分析

 1
 1 → 1

$$R_c = |\bar{y}_{cd1} - \bar{y}_{cd3}|$$

 1
 2 → 2
 $R_d = |\bar{y}_{cd1} - \bar{y}_{cd2}|$

 2
 1 → 3

作用: 简化试验,降低试验次数。

三、直积法蕌珯

适应于: 两组不同性质的因素,或分属于不同工序的两组因素。组内交互作用较少,而组间交互作用较多。

例1-8 在2³×3⁴七因素试验中,二水平A、B、C因素与三水平因素D、E、F、G是不同性质的两组因素,试用直积法试验考察以下各因素效应及交互作用的效应:

 $A \times D$

 $A \times E$

 $B \times E$

 $B \times F$

 $C \times F$

 $C \times G$

表 1 - 49 $L_{\bullet}(3^{4}) \times L_{\bullet}(2^{3})$ 真积法试验方案

分别安排一 将两表直到 如表1-49月	C(3) B(2) A(1)	$1(B_1)$	2(B ₂)	$2(C_2)$ $1(B_1)$ $2(A_2)$	$2(B_z)$				
试图家	D (1)	E (2)	F (3)	G (4)	因繁号	1	2	3	4
1	$1(D_1)$	$1(E_1)$	$1(E_1)$	$1(G_1)$		\mathcal{Y}_{11}	<i>y</i> ₁₂	y_{13}	<i>y</i> ₁₄
2 3] 1		$2(F_2)$	$2(G_2)$	·	\mathcal{Y}_{21}	y_{22}	y_{23}	\mathcal{Y}_{24}
3	1	$3(E_3)$	$3(F_3)$	$3(G_3)$		y_{31}	y_{32}	y_{33}	y_{34}
4	$2(D_2)$	1	2	3		y_{41}	y_{42}	${\cal Y}_{43}$	y_{44}
5 6	2	2	3	1		y ₅₁	${oldsymbol{y}}_{oldsymbol{52}}$	y_{53}	y_{54}
	2	3	1	2		· 361	y_{62}	y_{63}	Y64
7	$3(D_3)$	1	3	2 3		y ₇₁	y_{72}	Y73	Y74
8	3	2	1	3		\mathcal{Y}_{01}	${\cal Y}_{02}$	y_{83}	\mathcal{Y}_{84}
9	3	3	2	1		<i>y</i> 91	y_{92}	y ₉₃	Y94

§1.9 拟因素设计法

拟因素法: 多水平数因素试验→少水平正交表

一般,b=3因素→二水平正交表 $L_a(2^c)$

方法:综合运用并列法、拟水平法、赋闲列法

难点:表头设计

设计基本原则:

正交表自由度应大于因素和交互作用自由度总和:

$$f_{\mathbb{A}} = \sum f_{\mathbb{B}} + \sum f_{\mathbb{X}} \le a - 1$$

其中:
$$f_{\mathbb{B}} = b - 1$$

$$f_{A \times B} = (b_A - 1)(b_B - 1)$$

表头设计原则:

$$\begin{cases} f_{\mathbb{E}} = f_{\overline{y}|} \\ f_{A \times B} = \sum f_{\overline{y}|} = \sum (b-1) \end{cases}$$

其中: $f_{y} = b - 1$

$$f_{\mathbb{B}} = f_{\mathbb{M}}$$
 如2水平因素 $\to L_a(2^c)$ 占 1 列 3水平因素 $\to L_a(3^c)$ 占 1 列 $f_{\mathbb{B}} > f_{\mathbb{M}}$ 如b=3因素 \to 二水平表 $L_a(2^c)$ 占 2 列

$$f_{\mathbb{H}} < f_{\mathbb{H}}$$
 如b=2因素→三水平表 $L_a(3^c)$ 应1个拟水平

- 1、拟水平增加因素自由度,拟1个水平增加1个自由度;
- 2、赋闲列减少因素自由度。

m个因素共用赋闲列自由度减少m-1个

例1-9 欲进行八因素试验,A是四水平因素,B、C是三水平因素,D、E、F、G、H为二水平因素,交互作用只考察 $B \times D$,试用拟因素设计法设计试验方案。

A → 四水平 B、C →各拟1个水平→ 四水平 对A、B、C三因素并列→ 共用1个赋闲列 D、E、F、G、H → 二水平因素 A →
B、C → 各拟1 个水平→
对A、B、C三因素并列→
D、E、F、G、H →

四水平 各增加1个自由度、 减少2个自由度 二水平因素

总自由度=原自由度+拟因素增加一赋闲列减少=(4-1)+2(3-1)+5(2-1)+(3-1)(2-1)+1+1-2

故需14列,可选 L_{16} (2¹⁵)二水平正交表

1、2、3列并列 → B 1、4、5列并列 → C 1、6、7列并列 → A D → 8列 B×D → 10、11列(交互作用在1列) D、E、F、G、H→ 12、13、14、15列 9列为空列,可分析试验误差

表 1-33 41 × 32 × 25 试验表头设计 D \boldsymbol{E} G \boldsymbol{H} 因 素 赋闲 \boldsymbol{B} \boldsymbol{C} A $B \times D$ 11 12 15 列 号 1 10 13

对于三水平因素安排在二水平表的拟因素试验:

结果分析时,第j个因素的优水平由yik判断:

$$\overline{y}'_{j1} = \overline{y}_{j1} - w_f$$

$$\overline{y}'_{j2} = \overline{y}_{j2} = \frac{1}{2} (\overline{y}_{j2 \pm} + \overline{y}_{j2 \mp})$$

$$\overline{y}'_{j3} = \overline{y}_{j3} + w_f$$

式中:
$$w_f = \frac{1}{2}(\overline{y}_{j2\perp} - \overline{y}_{j2\top})$$

 w_f 为j因素修正项,是为消除试验干扰而进行的修正。

y_{j2上}是上半号试验指标的平均值。

y_{i2下}是下半号试验指标的平均值。

结果分析采用极差分析:

$$R_j = \max(\bar{y}'_{j1}, \bar{y}'_{j2}, \bar{y}'_{j3}) - \min(\bar{y}'_{j1}, \bar{y}'_{j2}, \bar{y}'_{j3})$$

例1-10 土壤粘附力测量仪研制试验, 欲进行 4×3²×2的四因素试验, 以考察各因素对组合式测盘测力效果的影响。

表 1-34 试验因素水平

水平	A 土壤条件		B /mm	C 压力/kPa	D 组合锥度
1	黄黏土(w=35%)	Ø ₅ = 85	Ø _内 =45	10	90°
2	黄黏土(w=25%)	Ø ₅ = 95	Ø _内 = 50	20	120°
3	黑壤土(w=30%)	Ø _∳ = 105	Ø _{ph} =60	30	_
4	黑壤土(w=20%)				,

拟采用拟因素法,由于A、B、C三因素交互作用不明,不宜用赋闲列。故选用 L_{18} (2^{15})正交表。表头设计如表所示。

表 1-35 拟因素表头设计

因 素	A		В			С		D				-		
列号 1	4	5		10	3	12	15	6	7	9	11	13	14	15

为减少试验次数,还可以采用拟水平追加法。即D因素拟一个水平,A因素追加一个水平,选用 L_9 (3⁴)+3安排正交试验。

每个试验点重复2次,因素D按三因素分析, 但极差应按表1-17修正。结果见下表。

表 1-36 拟水平追加试验

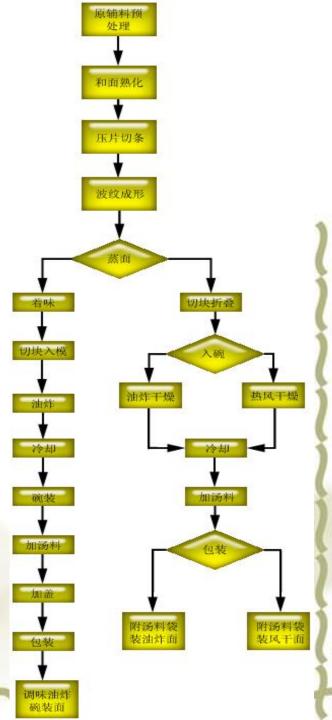
\setminus_j	1	2	3	4	y_{i1}	У ₁₂	-
i	A	В	\boldsymbol{C}	D	711	712	\bar{y}_i
1	$1(A_1)$	1(B ₁)	1(C ₁)	$1(D_1)$	11. 94	10. 90	11.42
2	1	$2(B_2)$	$2(C_2)$	$2(D_2)$	19. 40	17. 20	18. 30
3	1	$3(B_3)$	$3(C_3)$	$3(D_1)$	24. 40	26.00	25. 20
4	$2(A_2)$	1	·2	3	17. 09	18. 51	17. 80
5	2	2	3	1	20. 80	22. 80	21. 80
6	2	3	1	2	9. 40	7. 00	8. 20
7	$3(A_3)$	1	3	2	20. 24	22. 04	21. 14
8	3	2	1	3	7. 85	6. 35	7. 10
9	3	3	2	1	10.06	8. 78	9.42
10	$4(A_4)$	1	1	1	6. 04	6. 60	6. 32
11	4	2	2	2	7.74	9. 46	8. 60
12	4	3	3	3	16. 87	15. 93	16. 40
\tilde{y}_{j1}	18. 31	15. 94	8.06	13. 36			
\bar{y}_{j2}	15. 93	14. 12	13. 56	14. 26			
\tilde{y}_{j3}	12. 55	12. 81	21. 25	15. 23		主次因素顺序	\$
\bar{y}_{j4}	10. 44	_	_	_		C A B D	
R_j	7. 87	3. 13	13. 19	1. 87	·		
R'_j	3. 54	1. 63	6. 86	0. 97			

§ 1.10 多指标正交试验设计及分析

多项指标:有些指标越高越好,而有些则越低越好如液体葡萄糖生产工艺试验,同时考察四个指标:

- ① 生产率,要求越高越好;
- ② 还原糖含量,要求在32-40%之间;
- ③ 透明度, 要求比浊数越小越好;
- ④ 色泽, 要求比色数越小越好。

分析时,必须统筹兼顾,寻找使各项指标都尽可能好的条件。


两种常用方法:

- 1、综合平衡法
- 2、综合评分法
- 一、综合平衡法:按单指标分别分析,再综合平衡。特点:
 - (1)能了解各个指标与因素水平之间的关系
 - (2) 明确每个单项指标的主次顺序和优水平
 - (3)可由专业知识确定各项指标对试验的重要程度

例1-11 在油炸方便面生产中,主要原料质量和工艺参数对产品的质量有影响,今欲通过试验确定最佳生产条件。

(一)试验方案设计

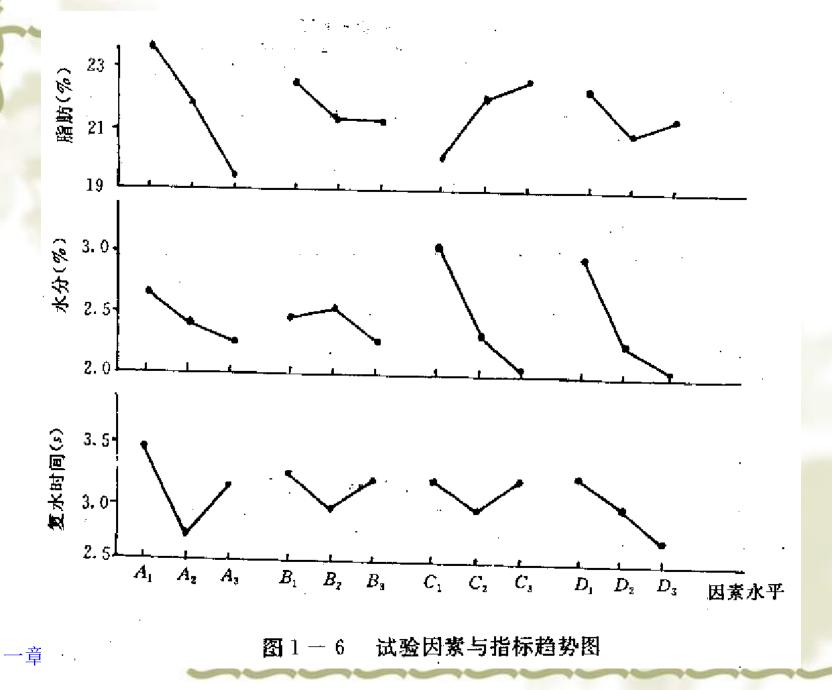

1. 根据专业知识,评价方便面质量好坏的主要指标是脂肪含量、水分含量和复水时间,其中脂肪含量越低越好、水分含量越高越好、复水时间越短越好,选这三项指标为试验指标。

表 1-27 试验方案及结果分析表

_			-	2K 1	21 100,380) 杂众纸术	77 Y AX		
•	深	多	(1)A	(2)B	(3) <i>C</i>	(4)D	脂肪(%)	水分 y ₁₂	复水时间 ya
•		1 2	1 1.	1 2	3	2	24. 8 22. 5	2. 1 3. 8	3. 5 3. 7
٠:		2 3	1	2 3	$\frac{1}{2}$	1 3	23.6	2. 0	3.0
: .	- 1	4	2 +	1 7	2 3	1	23.8	2. 8	3.0
		4 . 5 6		2 3 1 2	3	3	22.4	1. 7	2. 2 2. 8
	(6	2	3	1	2	19.3	2. 7	2.8
	,	7 B	2 3 3 3	1	1	3 2	18.4	2. 5	3.0
			3	2,	2 3	2	19.0	2.0	2.7 m
_		9	3	3		1	20.7	2. 3	3. 6
		y_{j1}	70. 9	67.0	60.2	67.0			
٠.	· .,	y ,2	65. 5	63.9	66.4	63.1			
	胎	y ₁₃	58.1	63.6	67.9	64.4			
	脂肪	y jı	23.6	22.3	20. 1	22.3	2] = 194.	. 5
	14.4	2/2	21.8	21.3	22. 1	21.0			
		<u>y</u> ₁₃	19.4	21.2	22.6	21.5	1		
-		R_{j}	4.2 7.9	1.1	2.5	1.3			
		y _n	7.9	7.4	9.0	8.9			
		y j2	7.2	7.5	6.8	6.8	ł		
	水	y _{i3}	6.8	6. 9	6.1	6, 2	<u> </u>	·	
	水分	<u>y</u> j1	2. 63	2.47	3.700	2. 97	2		9
		<u>y</u> _{j2}	2.40	2.50	2. 27	2. 27			
		R_i	2. 27	2. 30	2. 03	2.07			-
		-	0. 36 10. 2 ⁷	0. 20 9. 5	0. 97 9. 5	0. 90 10. 3	 		
		<i>y</i> _{j1}	8. 0	8. 6	8.7	9. 0			
	复	$egin{array}{c} oldsymbol{y}_{j2} \ oldsymbol{y}_{j3} \end{array}$	9.3	9. 4	9.3	8. 2	-	•	
	复水		3. 40	3. 17	3. 17	3. 43	7	C = 27.	k
	时	$egin{array}{c} \mathcal{Y}_{j1} \ \mathcal{Y}_{j2} \end{array}$	2. 67	2. 87	2. 90	3. 00	_	٠٠٠٠ – ر	
	间	y_{j3}	3. 10	3. 13	3. 10	2. 73			. 5
		R	0.73	0.30	0. 27	0.730	11.12	. · •	

(二)试验结果分析(见表1-27)

- 1. 画出因素与各指标的趋势图,如图1-6所示。
- 2. 初选最优工艺条件。

脂肪含量:主次因素为A、C、D、B; 优水平为 A_3 、 B_3 、 C_1 、 D_2 ; 最优组合为 $A_3B_3C_1D_2$

水分含量: 主次因素为C、D、A、B; 潼 优水平为A₁、B₂、C₃、D₁; 最优组合为A₂B₂C₂D₁;

3. 综合平衡确定最优工艺条件。蕌

由于三个指标单独分析出来的最优条件并不一致,必须根据因素的三个指标影响的主次顺序,综合考虑确定出最优工艺条件。

A因素影响: 对脂肪 第一 优水平A3

对复水时间 第一 优水平A₂

对水分 第三 次要因素

∴可以取A₂或A₃,但取A₂时复水时间比取A₃时缩短14% 面形脏念景口比取A 增加了11 2% 日从水公长标上比

,而脂肪含量只比取A₃增加了11.3%,且从水分指标上比

较,取A2时也比取A3好。

故A应取A2。

B因素: 对复水时间 第三位 优水平B2

对脂肪、水分第四位,次要因素,因此应取 B_2 。

因素C: 对脂肪 第二位 C_1

对水分 第一位 C_1

对复水时间 第四位 次要因素 故C应取C₁。

因素D: 对水分 第二位, D_1

对复水时间 第二位 D₃

对脂肪 第三位 D_2

因此D可取D₁或D₃,但取D₁时,虽然水分含量高,可复水时间最大,并且脂肪含量也最高,而D对此两项指标的影响也是比较主要的,综合考虑应取D₃。

所以,本试验的较优条件为 A_2 、 B_2 、 C_1 、 D_3

即:湿面筋值为32% 改良剂的用量为0.075%

油炸时间为70秒 油炸温度为160℃

此条件不在九次试验中,可追加一次试验加以验证。

综合平衡法,计算简便,能清晰地反映因素对各项指标的影响。但综合平衡时一般较困难,也难于解决复杂的 多指标问题。例如表1-31所示的某试验三个因素对三个指标的主次情况就很难平衡。

试验指标	因素主次
Y ₁	ABC
Y_2	CAB
Y ₃	BCA

2、综合评分法

先按指标重要程度分别加权打分,然后将多指标转化 成单一综合指标,再计算分析。蕌

关健:确定各项指标的权值

"综合评分"一般公式为:

$$y_i^* = a_1(y_i)_1 + a_2(y_i)_2 + \dots \sum_k a_k(y_i)_k$$

式中: y,* 一表示第i 号试验的综合评分;

 a_k 一为转化系数,即将第k项指标转化为综合评分的系数,两种转化方法:

①直接加权法:
$$a_k = c_k \cdot \omega_k$$

 c_k 一为第k项指标的缩减(扩大)系数,使各项指标具有大致相同的数量级;

 ω_k 一表示第k项试验指标的权值

②基本法:

$$a_k = c_k \cdot \omega_k / r_k$$

 r_k 一为第k项试验指标的极差

a_k 反映了第k项试验指标的重要程度

"十"一表示指标越大越好

"一"一表示指标越小越好

例1-12 试验考察某工程车在非路面上的通过性能,以便为工程车整体设计提供依据。通过性能由滚动阻力 p_f 、滑转率δ 和下陷深度z三个指标衡量,且都越小越好。

确定各指标权值

根据试验要求、专业知识和实际经验,

 p_f 、δ 和z三个指标的权值为4、3、2,均为正值各项指标数量级相同,取 $c_1 = c_2 = c_3 = 1$ 。

试验因素及水平

试验等	接地比压 (10 ⁵ Pa) (1)A	行走机构 型式 (2)B	仪器布置 方式 (3)C
1	(1)0.18	(1) 普通型	(1) 中置
. 2	(1)0.18	(2) 改进型	(2) 前量
3	(2)0, 21	(1) 普通型	(2) 前置
4	(2)0. 21	(2) 改进型	(1) 中置

表 1-32 多指标试验结果分析

				4 27 18 የአሁ	4独标木	भ्रम			
H.	因素	接地比压 (10 ⁵ Pa) (1)A	行走机构 型式 (2)B	仪器布置 方式 (3)C	P_f (KN) $(y_i)_1$	o (%) (y _i) ₂	Z (mm) (y _i) ₃	$(y_i)^*$ $a_k = W_k$	$y_{i}^{t} \cdot a_{k} = \frac{W_{k}}{r_{k}}$
	1	(1)0.18	(1) 普通型	(1) 中置	5. 6	1. 2	1. 2	28.4	11. 29
	2	(1)0.18	(2) 改进型	(2) 前量	5. 2	1.6	6.0	37.6	12. 45
	3	(2)0, 21	(1) 普通型	(2) 前置	7. 2	6. 4	5. 6	59. 2	18. 71
	4	(2)0. 21	(2) 改进型	(1) 中置	5. 0	4. 0.	7. 0	46.0	13. 81
ļ	\bar{y}_{j1}	33. 0	43. 8	37. 2	-,-	·-·-		<u> </u>	
y_i^*	ȳ _{j2} ⁺	52. 6	41. 8	48. 4		_	2. 2, 5.	2.5.8	
	R_j *	19. 6	2. 0	11. 2				A,C,B	
	\bar{y}_{j1}'	11. 87	15.00	12. 55		Ħ	化平:A	$C_1 = B$	z
y/ -	\bar{y}_{j2}'	16. 26	13. 13	15. 58		最	优组合:/	$A_1B_2C_1$	
	R_j^{i}	4. 39	1.87	3. 03	-			•	

1、当用直接加权法时

$$a_k = C_k \omega_k = \omega_k$$

则综合评分为:

$$y_i^* = 4(y_i)_1 + 3(y_i)_2 + 2(y_i)_3$$

如:对第1号试验:

$$y_1^* = 4 \times 5.6 + 3 \times 1.2 + 2 \times 1.2 = 28.4$$

结果见表,并以y_i*进行分析,得:

因素主次顺序为A、C、B,最优组合为 $A_1B_2C_1$ 。

ď,	因素	接地比压 (10 ⁴ Pa) (1)A	行走机构 型式 (2)B	仪器布置 方式 (3)C	P_f (KN) $(y_i)_1$	$\sigma = (\%)$ $(y_i)_2$	Z (mm) (y _i) ₁	$(y_i)'$ $a_k = W_k$	$y_{i}' \cdot a_{i} = \frac{W_{i}}{r_{i}}$
	1	(1)0.18	(1) 普通型	(1) 中置	5. 6	1. 2	1. 2	2.84	11. 29
	2	(1)0.18	(2) 改进型	(2) 前量	5, 2	1.6	6.0	37.6	12. 45
	3	(2)0, 21	(1) 普通型	(2) 前置	7. 2	6.4	5.6	59. 2	18. 71
	4	(2)0.21	(2) 改进型	(1) 中置	5. 0	4. 0.	7.0	46.0	13. 81
	\bar{y}_{j1}	33. 0	43. 8	37. 2					
y _i 1	y _{j2} ∙	52. 6	41. 8	48. 4		_	2. 2, 5.) 5 0	
	R_j *	19. 6	2.0	11. 2				:A,C,B	
	\bar{y}_{j1}' .	11. 87	15.00	12. 55		Ħ	₹水平:A	, C ₁ B	2
V -	\bar{y}{n}'	16. 26	13. 13	15. 58	1 1 1	最	党组合: /	$A_1B_2C_1$	
	R_i^{I}	4. 39	1.87	3. 03				•	

2、当用基本法时

$$a_k = c_k \cdot \omega_k / r_k$$

分别求出各试验指标的极差,如第2项指标,其最大值为6.4;最小值为1.2,则其极差:

$$r_2 = 6.4 - 1.2 = 5.2$$

于是

$$y_i^* = \frac{4}{2.2} (y_i)_1 + \frac{3}{5.2} (y_i)_2 + \frac{2}{5.8} (y_i)_3$$

id.	因素	接地比压 (10 ⁶ Pa) (1)A	行走机构 型式 (2)B	仪器布置 方式 (3)C	P_f (KN) $(y_i)_1$	σ $(\%)$ $(y_i)_2$	$Z \\ (mm) \\ (y_i)_2$	$(y_i)^*$ $a_k = W_k$	y_{i}^{t} $a_{k} = \frac{W_{k}}{r_{k}}$
	1	(1)0.18	(1) 普通型	(1) 中置	5. 6	1. 2	1. 2	2.84	11. 29
,	2	(1)0.18	(2) 改进型	(2) 前量	5. 2	1. 6	6.0	37.6	12. 45
	3	(2)0, 21	(1) 普通型	(2) 前置	7. 2	6.4	5. 6	59.2	18.71
	4	(2)0.21	(2) 改进型	(1) 中置	5. 0	4. 0.	7.0	46.0	13. 81
	\bar{y}_{j1}	33. 0	43. 8	37. 2	2.2	5.2	5.8		
y_i	<i>ȳ_{j2}</i> ⁺	52. 6	41.8	48. 4		_	2. 2, 5.	2.5.8	
	R _j *	19. 6	2.0	11. 2				.A,C,B	
	\bar{y}_{i1}' .	11. 87	15.00	12. 55		H	沈水平:A	, C ₁ B	2
y_i^{j} .	\bar{y}_n	16. 26	13. 13	15. 58		嚴	尤组合:	$A_1B_2C_1$	
	R_j^{T}	4. 39	1.87	3. 03				•	

以火,的计算结果进行计算分析,可得到同样的优化结果。

综合评分法能比较方便地解决某些结果分析比较困难的多指标试验问题,但却无法反映各因素对各项指标的具体影响。因此,实际应用时,应对具体问题作具体分析,灵活运用上述方法。

1.11 正交试验设计的效应分析

§ 1.11.1 试验数据的结构模型蕌

在试验中, 若要估计以下试验的指标值:

试验点之外的优组合;

末出现的组合处理。

需要利用现有试验结果估算,一般设其为线性结构:

$$y = m + \varepsilon$$

 $y = m + \varepsilon$

其中:

m一各被控因素对指标影响的总和

ε-为未加控制的因素(随机因素)对试验 指标影响的总和,即试验随机误差。

试验效应=各因素效应+试验误差

一、单因素试验的数据结构式 设单因素试验,因素A有k个水平,重复r次 共做n = kr次试验

$$y_{ij} = m_i + \varepsilon_{ij}$$

其中:

 y_{ij} 一第i水平、第j次重复的指标实测值 m_i 反映的是第i水平试验指标的理论值 ε_{ii} 表示对应的随机误差。

为分析因素水平变动对 y_{ij} 的影响,对 m_i 再做分解,为此引入一般平均、效应:

$$m_i = \mu + a_i$$

其中:

$$\mu = \frac{1}{k} \sum_{i=1}^{k} m_i$$
 即因素取中等水平时的试验结果,或一般平均

 $a_i = m_i - \mu$ 第i水平效应,即在该水平下 y_{ij} 比其中等水平 高或低多少。

故有:

$$y_{ij} = \mu + a_i + \varepsilon_{ij}$$

二、双因素试验的数据结构式蕌

同样道理,对双因素试验 $A, B, A \times B$

$$y_{ij} = \mu + a_i + b_j + (ab)_{ij} + \varepsilon_{ij}$$

式中:

μ一指标数据平均值

 $a_i - A$ 因素 i 水平对 y的效应

 b_{j} —B因素 j水平对y的效应

 $(ab)_{ij}$ $-A_iB_j$ 联合搭配对 y的影响

对多因素,可同理类推,写出其指标的数据结构。

例1-13: 列出例1-4中试验数据的结构模型

表 1-16 玉米摘穗试验结果分析表

				<u> </u>	
因素	(1)A	(2)B	(3)C	(4)D	<i>y_i/%</i>
试验号	 摘辊速度/(r・min ⁻¹)	辊倾角/(°)	喂送速度/(m・s ⁻¹)	摘辊型式	
1	(1) 700	(1) 40	(1) 1.6	(1) 甲	0. 14
2	(1) 700	(2) 35	(2) 1.8	(2) 乙	0. 17
3	(2) 650	(1) 40	(1) 1.6	(2) 乙	0. 25
4	(2) 650	(2) 35	(2) 1.8	(1) 甲	0.31
5	(3) 600	(1) 40	(2) 1.8	(1) 甲	0.41
	(3) 600	(2) 35	(1) 1.6	(2) 乙	0. 34
6	(4) 750	(1) 40	(2) 1.8	(2) 乙	0. 11
7 8	(4) 750	(2) 35_	(1) 1.6	(1) 甲	0.08
			•		I _

表 1-16 玉米摘穗试验结果分析表

因素	(1)A	(2)B	(3) <i>C</i>	(4)D	y _i /%
试验号	摘辊速度/(r・min ⁻¹)	辊倾角/(°)	喂送速度/(m·s ⁻¹)	摘辊型式	
1	(1) 700	(1) 40	(1) 1.6	(1) 甲	0. 14
2	(1) 700	(2) 35	(2) 1.8	(2) 乙	0. 17
3	(2) 650	(1) 40	(1) 1.6	(2) 乙	0. 25
4	(2) 650	(2) 35	(2) 1.8	(1) 甲	0.31
5	(3) 600	(1) 40	(2) 1.8	(1) 甲	0.41
	(3) 600	(2) 35	(1) 1.6	(2) 乙	0. 34
6		(1) 40	(2) 1.8	(2) 乙	0.11
7	(4) 750 (4) 750	(2) 35	(1) 1.6	(1) 甲	0.08
8	(4) 130	(2) 50			<u> </u>

该试验的试验数据的结构模型为:

$$y_{1} = \mu + a_{1} + b_{1} + c_{1} + d_{1} + \varepsilon_{1}$$

$$y_{2} = \mu + a_{1} + b_{2} + c_{2} + d_{2} + \varepsilon_{2}$$

$$y_{3} = \mu + a_{2} + b_{1} + c_{1} + d_{2} + \varepsilon_{3}$$

$$y_{4} = \mu + a_{2} + b_{2} + c_{2} + d_{1} + \varepsilon_{4}$$

$$y_{5} = \mu + a_{3} + b_{1} + c_{2} + d_{1} + \varepsilon_{5}$$

$$y_{6} = \mu + a_{3} + b_{2} + c_{1} + d_{2} + \varepsilon_{6}$$

$$y_{7} = \mu + a_{4} + b_{1} + c_{2} + d_{2} + \varepsilon_{7}$$

$$y_{8} = \mu + a_{4} + b_{2} + c_{1} + d_{1} + \varepsilon_{8}$$

1.11.2 试验指标的估计

以 L4(23) 为例

丰	1	 2	<i>f</i>	(2)	3
	_	ш		ч. —	

<u></u>		•		
浏 号	A 1	B 2	A×B 3	$\hat{y}_1 = \mu + \hat{a}_1 + \hat{b}_1 + (\overline{ab})_{11}$
1	1	1	1	$\hat{y}_2 = \mu + \hat{a}_1 + \hat{b}_2 + (\overline{ab})_{12}$
2	1	2	2	
.3	2	1	2	$\hat{y}_3 = \mu + \hat{a}_2 + b_1 + (ab)_{21}$
4	2	2	1	$\hat{\mathbf{v}}_{4} = \mu + \hat{a}_{2} + \hat{b}_{2} + (\overline{ab})_{22}$
	·	2 1 2	2 2 1	$\hat{y}_3 = \mu + \hat{a}_2 + \hat{b}_1 + (\overline{ab})_{21}$ $\hat{y}_4 = \mu + \hat{a}_2 + \hat{b}_2 + (\overline{ab})_{22}$

其中:

 \hat{y}_i -试验指标的计算值,设其为线性结构

$$\mu = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{1}{4} \sum_{i=1}^{4} y_i$$

$$\hat{a}_k = \overline{y}_{AK} - \overline{y}$$

$$\hat{b}_l = \overline{y}_{BK} - \overline{y}$$

一指标的平均值

 \hat{a}_{k} 一A因素K水平的平均值与 μ 的差值,即A因素K水平对Y的效应

 \hat{b}_{i} —B因素L水平对Y的效应

 \bar{y}_{A_k} 一A因素K水平对应指标的平均值

 \bar{y}_{B_l} —B因素L水平对应指标的平均值

 $\overline{y}_{A_k B_l}$ 一交互作用 $A_K \times B_l$ 对应指标的平均值

例1-14: 在例1-4中最优组合 A_2 、 B_2 、 C_1 、 D_2 ,不在已做的试验组合中,现估计其试验指标估计值。

表 1-16 玉米摘穗试验结果分析表

因素	(1)A 摘辊速度/(r・min ⁻¹)	(2)B 辊倾角/(°)	(3) <i>C</i> 喂送速度/(m·s ⁻¹)	(4)D 摘辊型式	y _i /%
1	(1) 700	(1) 40	(1) 1.6	(1) 甲	0. 14
2	(1) 700	(2) 35	(2) 1.8	(2) 乙	0. 17
3	(2) 650	(1) 40	(1) 1.6	(2) 乙	0. 25
4	(2) 650	(2) 35	(2) 1.8	(1) 甲	0. 31
5	(3) 600	(1) 40	(2) 1.8	(1) 甲	0.41
	(3) 600	(2) 35	(1) 1.6	(2) 乙	0. 34
6	(4) 750	(1) 40	(2) 1.8	(2) 乙	0. 11
7	(4) 750	(2) 35	(1) 1.6	(1) 甲	0.08
8	(4) /50	(-)			

最优组合 A_2 、 B_2 、 C_1 、 D_2 估计值

$$\hat{y}_{\text{th}} = \hat{\mu} + \hat{a}_2 + \hat{b}_2 + \hat{c}_1 + \hat{d}_2$$

各效应估计值

$$\hat{\mu} = \bar{y} = \frac{1}{8} \sum_{i=1}^{8} y_i = 0.228$$

$$\hat{a}_2 = \hat{y}_{a2} - \overline{y} = -0.131$$

$$b_2 = \hat{y}_{b2} - \overline{y} = -0.001$$

$$\hat{c}_1 = \hat{y}_{c1} - \overline{y} = -0.024$$

$$\hat{d}_2 = \hat{y}_{d2} - \bar{y} = -0.009$$

最优组合估计值

$$\hat{y}_{\text{th}} = 0.228 - 0.131 - 0.001 - 0.024 - 0.009$$
$$= 0.081$$

例1-15: 用正交表 $L_8(2^7)$ 安排 $A \times B \times C \times D$ 四个 二水平因素及交互作用 $A \times B$,试验方案及结果如

表2-3:

表 2-3 正交试验方案及结果

			表 4 一 3 11	.父以短刀:				<u>, </u>
表头设计	碱浓度 % A	碱处理时 间(min)	$A \times B$	盐浓度 % C	处理时 间(min) D	-		试验结果
试验到号	1	2	3	4	5	6	7	
1	1(0, 2)	1(10)	1	1(0.3)	1(10)	1	1	44. 14
2	1	1	1	2(3)	2(15)	2	.2	50.51
3	1	2(15)	2	1	1	2	2	35. 21
4	1	2	2	2	2	1	1	35. 90
5	2	(0.4)1	2	1	2	1	2	63. 60
6	2	1	2	2	1	2	1	25. 62
7	2	2	1	1	2	. 2	1	44. 38
8	2	2	1	2	1	1	2	24. 83
У _{ј1}	165. 76	183. 87	163.86	187.33	129. 80	168.47	150.04	40.52
y_n	158. 43	140. 32	160. 33	136.86	094. 39	155. 72	174.15	
\tilde{y}_{j1}	141. 44	45. 97	40. 97	46.83	32. 45	42.12	37. 51	7
\bar{y}_{j2}	39. 61	35. 08	40.08	34: 22	48.60	38.93	43.54	
R_{j}	1.83	10. 89	0.89	12. 61	16. 15	3.1	6. 03	
优水平	A_1	B_1		C_1	D_2			
优组合				$A_1B_1C_1D$	2			

表头设计	碱浓度 % A	碱处理时 间(min)	$A \times B$	盐浓度 % C	闰(min) D			试验结果
试验到号	1	2	3	4	5	6	7	·
1	1(0, 2)	1(10)	1	1(0.3)	1(10)	1	1	44. 14
2	1	1	1	2(3)	2(15)	2	.2	50. 51
3	1	2(15)	2	1	1	2	2	35. 21
4	1	2	2	2	2	1	1	35. 90
5	2	(0.4)1	2	1	2	1	2	63. 60
6	2	1	2	2	1	2	1	25. 62
7	2	2	1	1	2	. 2	1	44. 38
8	2	2	1	2	1	1	2	24. 83

$$\hat{y}_1 = \mu + \hat{a}_1 + \hat{b}_1 + (\overline{ab})_{11} + \hat{c}_1 + \hat{d}_1$$

$$\hat{y}_2 = \mu + \hat{a}_1 + \hat{b}_1 + (\overline{ab})_{11} + \hat{c}_2 + \hat{d}_2$$
.....

$$\hat{y}_8 = \mu + \hat{a}_2 + \hat{b}_2 + (\overline{ab})_{22} + \hat{c}_2 + \hat{d}_1$$

其中:

$$\mu = \frac{1}{8} \sum_{i=1}^{8} y_i = \bar{y}$$

$$\hat{a}_1 = \bar{y}_{A1} - \bar{y}, \qquad \hat{a}_2 = \bar{y}_{A2} - \bar{y}$$

$$\hat{b}_1 = \overline{y}_{B1} - \overline{y}, \qquad \hat{b}_2 = \overline{y}_{B2} - \overline{y}$$

$$\hat{c}_1 = \bar{y}_{C1} - \bar{y}, \qquad \hat{c}_2 = \bar{y}_{C2} - \bar{y}$$

$$\hat{d}_1 = \overline{y}_{D1} - \overline{y}, \qquad \hat{d}_2 = \overline{y}_{D2} - \overline{y}$$

表头设计	減浓度 % A	碱处理时 间(min)	$A \times B$	盐浓度 % C	闰(min) D			试验结果
试验到号	1	2	3	4	5	6	7	
1	1(0, 2)	1(10)	1	1(0.3)	1(10)	1	1	44.14
2	1	1	1	2(3)	2(15)	2	, 2	50.51
3	1	2(15)	2	1	1	2	2	35. 21
4	1	2	2	2	2	1	1	35. 90
5	2	(0.4)1	2	1	2	1	2	63. 60
6	2	1	2	2	1	2	1	25. 62
. 7	2	2	1	1	2	, 2	1	44. 38
8	2	2	1	2	1	1	2	24. 83

$$(\overrightarrow{ab})_{11} = \overline{y}_{A1B1} - \hat{a}_1 - \hat{b}_1 - \overline{y} = \frac{y_1 + y_2}{2} - \hat{a}_1 - \hat{b}_1 - \overline{y}$$

$$(\overrightarrow{ab})_{12} = \overline{y}_{A1B2} - \hat{a}_1 - \hat{b}_2 - \overline{y} = \frac{y_3 + y_4}{2} - \hat{a}_1 - \hat{b}_2 - \overline{y}$$

$$(\overrightarrow{ab})_{21} = \overline{y}_{A2B1} - \hat{a}_2 - \hat{b}_1 - \overline{y} = \frac{y_5 + y_6}{2} - \hat{a}_2 - \hat{b}_1 - \overline{y}$$

$$(\overrightarrow{ab})_{22} = \overline{y}_{A2B2} - \hat{a}_2 - \hat{b}_2 - \overline{y} = \frac{y_7 + y_8}{2} - \hat{a}_2 - \hat{b}_2 - \overline{y}$$

对本例,最优组合为 $A_1B_1C_1D_2$

则其理论值为:

$$\hat{y} = \mu + \hat{a}_1 + \hat{b}_1 + (\overline{ab})_{11} + \hat{c}_1 + \hat{d}_2$$

$$= 40.52 + 0.92 + 5.45 + 6.31 + 8.08 + 0.44$$

$$= 61.72$$

由指标的数据结构,可以进一步理解"自由度"自由度:因素独立效应的个数

设因素A有k个水平,有k个效应,但: $\sum a_i = 0$

故独立效应的个数为k-1个。

设 $A \times B$ 共有 $k \times L$ 个效应,但:

$$\sum_{i=1}^{k} (ab)_{ij} = 0$$
 $(j=1,....l)$
$$\sum_{i=1}^{l} (ab)_{ij} = 0$$
 $(i=1,....k)$

独立效应的个数为(k-1).(l-1)。

二水平因素交互作用自由度=1,所以占1列 三水平因素交互作用自由度=4,所以占2列(附表255)

直观分析法的利与弊:

以表2-1的 L_4 (23)正交表上试验方案为例,设A、B两个因素:

对A列,极差:

$$K_{11} - K_{22} = (y_1 + y_2) - (y_3 + y_4)$$
$$= 2(a_1 - a_2) + (\varepsilon_1 + \varepsilon_2) - (\varepsilon_3 + \varepsilon_4)$$

极差=因素A水平变动差异+误差

对B列,相同

对C列,反映了误差引起的差异,不含因素A或B

的影响

若不考虑误差则可能造成试验的偏差。

§ 1. 11. 3 缺失数据的弥补蕌

若有重复试验:可用末丢失的数据或其平均 值代替

若完全缺失: 可由指标估计式估算

但应注意, 弥补的数据不独立, 需要从总自由度或误差自由度分别减1

第二章 干扰控制试验设计

- § 2.1 试验数据结构与试验误差蕌
- 一、试验数据结构:

$$y = m + \varepsilon$$

- m一试验因素对指标影响的总和
- ε -未控制因素对指标影响的总和 即试验随机误差

二、试验误差

(一)试验误差来源

- 1.试验材料
- 2.试验仪器设备
- 3.试验环境条件
- 4.试验操作

(二)试验误差的分类

- 1.随机误差
- 2.系统误差:由某些因素按规律起作用而形成的误差

§ 2.2 试验干扰

试验干扰:是指可能对试验结果产生影响,但未加以考察和控制的条件、因素及其交互作用。

控制试验干扰,提高试验精度试验精度可由空列定性考察:

$$\Delta_i = y_i - \overline{y}_{i \hat{\Xi}}$$

空列各水平对应试验指标与其平均值间的差异, 反映了试验误差、末考察交互作用或末计入因素影响。

若该影响不大,则 \bar{y}_i 变化小,或 y_i 与 Δ_i 应有一致性

例2-1,考察表2-1中的试验数据。

表 3-1 试验数据的分析									
武器素	(1) A(r/min)	· (2) B(•)	(3) C(m/s)	(4) D	(5)	Ž⁄±i	y_i	Δi	
1	(1)700	(1)40	(1)1.6	(1) 甲	(1)	0. 225	(3)0.140	(3) - 0.085	
2	(1)700	(2)35	(2)1.8	(2) 乙	(2)	0. 228	(4)0.170	(4) 0.058	
3	(2)650	(1)40	(1)1.6	(2) 乙	(2)	0. 228	(5)0, 250	(5) 0.022	
4	(2)650	(2)35	(2)1.8	(1) 甲	(1)	0. 225	(6)0.310	(6) 0.085	
5	(3)600	(1)40	(2)1.8	(1) 甲	(2)	0. 228	(8)0.410	(8) 0.182	
6	(3)600	(2)35	(1)1.6	(2) 乙	(1)	0. 225	(7)0. 340	(7) 0.115	
7	(4)750	(1)40	(2)1.8	(2) 乙	(1)	0, 225	(2)0.110	(2) - 0.115	
8	(4)750	(2)35	(1)1.6	(1) 卯	(2)	0. 228	(1)0.080	(1) - 0.148	

空列考察方法: 蕌

1.计算空列各水平所对应的指标平均值 \bar{y}_{z_i}

$$2.求 \Delta_i = y_i - \overline{y}_{\widehat{\Sigma}_i}$$

- 3.分别给 y_i 和 $\triangle i$ 排序。
- 4.比较其序号,若一致,则试验精确,否则不精确。 表2-1完全一致,说明试验精度高。

例2-2 考察表2-2中的试验数据。本试验为三因素三水平试验,选 L_9 (3⁴)正交表,其中第三列为空

列。

计算完全同上。

结果见表2-2

可以看出 y_i 与 $\triangle i$ 的序号不一致,如表中的 \times 号者。

试 验 号	空 列 (3)	У́ _М	y_i	\triangle_i
1	1	2. 17	(3) 1.20	(3) - 0.97
2	2	1.87	(2) 1.10	\times (4) -0.77
3	3	2. 30	(6) 2.30	(6) 0.00
4	2	1. 87	(5) 1.40	(5) - 0.47
5	3	2. 30	(8) 3.40	× (7) 1.10
6	1	2.17	(9) 4.50	(9) 2.33
7	3	2_ 30	(4) 1.20	\times (2) -1.10
8	1	2.17	(1) 0.80	(1) - 1.37
9	22	1.87	(7) 3.10	× (8) 1.23

第二章 试验干扰控制

§ 2.2 试验设计的基本原则蕌

三个基本原则:

设置区组 重复试验 随机化措施

一、设置区组 区组设计

定义:缩小试验的时空范围,使试验条件均匀一致。

I II III

软

硬

作用: 区组间有差异, 而区组内则相对均匀

原理:均衡分布,从局部控制干扰

提高试验数据的精度和可比性。

前提: 试验因素与干扰之间没有交互作用。

A	В	С
A	В	С
Α	В	С
 瘠	···-	Æ

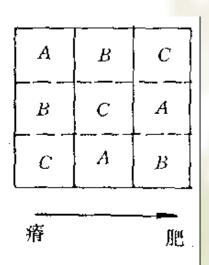


图 3-1 区组设计示意图

二、重复试验蕌

目的:估计试验误差,保证试验精度 提高试验的代表性。

安排原则:

一般3-5次,至少2次 误差较小时,可减少重复次数 或仅在最佳组合处做

三、随机化措施蕌

目的: 使误差产生的机会均等随机化的方法有两种:

- 1.完全随机化
- 2.部分随机化

在完全随机化的基础上,再进行某些人为调整。如某因素水平更换困难或某些组合处理之间有相互影响。

一般综合运用,以区组设计为核心,辅助以重

复试验和随机化措施。三者相辅相成,互相补充,

从而保证试验条件基本均匀一致,提高试验精度,

降低试验误差。

第二章 试验干扰控制

§ 2.4 单向干扰控制蕌

单向干扰:干扰只有一个条件因素。

一、完全区组设计

区组内含 \rightarrow 正交表所列的全部组合处理 例如,用 $L_4(2^3)$ 正交表安排A、B、C三个因素试验

全部组合处理:

- $1 \quad A_1B_1C_1$
- $2 \qquad A_1 B_2 C_2$
- $A_2B_1C_2$
- $4 \qquad \mathbf{A_2B_2C_1}$

称为完全区组设计

完全区组设计特点:

试验号一般为4,最多不超过8~9;

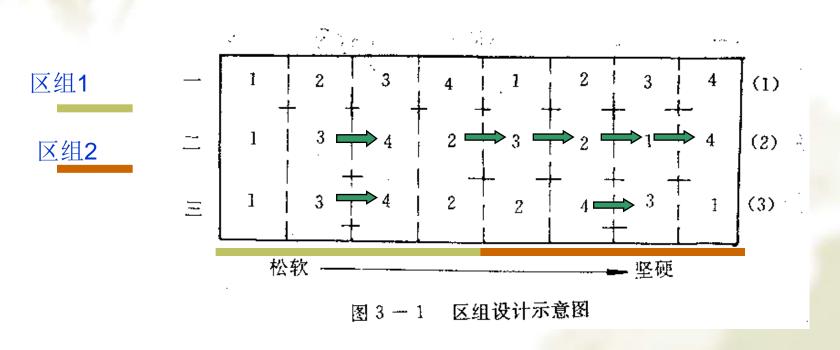
组合处理的重复次数=区组个数;

控制干扰不占列,不影响部分实施的大小。

例3-3 东方红—10拖拉机与IL2—30悬挂犁机组最大耕深试验,其试验方案如表3-3。表中h为悬挂点高度,H为立柱高。试验干扰:土壤条件的差异,实地考察情况如图3-2。

第二章 试验干扰控制

其试验方案如表3-3。表中h为悬挂点高度,H为立柱高。


表 3-3 最大耕深试验方案

武	梨铧 B	h A(mm)	h + H $C(mm)$	最大耕深 y,(cm)	
1	(1) 甲	(1)575	(1)1075		
2	(2) 乙	(1)575	(2)1145		
3	(1) 甲	(2)605	(2)1145		
4	(2) 乙	(2)605	(1)1075		

试验干扰:土壤条件的差异,实地考察情况如图3-2。

区组设计见图,进行随机化处理和调整。

结果分析: 以重复试验指标的平均值, 按极差分析。

二、不完全区组设计

不完全区组设计:只容纳部分组合处理的区组设 计

例如用 $L_{16}(4^5)$ 安排四水平四因素试验,控制单向干扰。

完全区组设计: 16号试验在一个区组内, 时空范围过大。

不完全区组设计:如取四个区组,每个区组放四 号试验。

特点:

能安排试验号较多的试验, a不受限制; 区组内试验号数,一般为2~4个; 重复试验一次即为全部区组的一次重复; 控制单向干扰需占一列, 称为区组列或干 扰列。

划分区组:

等水平表--可任选一列作为区组列,以控制单向干扰;

混合型表--通常选多水平列作为区组列。

区组数=区组列的水平数,

区组内的组合处理数=正交表试验号/区组列的水平数。

例如:

 $L_8(2^7)$ 取一列为区组列:

可分两个区组,各含四个组合处理;

 $L_{18}(6 \times 3^6)$ 取六水平列为区组列:

可分六个区组,每个区组含三个组合处理。

例2—4,将例2—3中东方红—20拖拉机与IL2—30悬挂犁机组最大耕深试验的三个二水平因素都扩大为三水平因素,在同样的试验条件下,进一步做试验,其试验方案如表2-4。

表 2-4 最大耕深试验方案及结果分析

(1) A	(2) B	(3) C	(4)
h/mm	型 铧	(h+H)/mm	区 组
(1) 645	(1) 甲	(1) 1220	(1)
(1) 645	(2) 乙	(2) 1145	(2)
(1) 645	(3) 丙	(3) 1075	(3)
(2) 605	(1) 甲	(2) 1145	(3)
(2) 605	(2) 乙	(3) 1075	(1)
(2) 605	(3) 丙	(1) 1220	(2)
(3) 575	(1) 甲	(3) 1075	(2)
(3) 575	(2) 乙	(1) 1220	(3)
(3) 575	(3) 丙	(2) 1145	(1)
	h/mm (1) 645 (1) 645 (1) 645 (2) 605 (2) 605 (2) 605 (3) 575 (3) 575	h/mm 型 铧 (1) 645 (1) 甲 (1) 645 (2) 乙 (1) 645 (3) 丙 (2) 605 (1) 甲 (2) 605 (2) 乙 (2) 605 (3) 丙 (3) 575 (1) 甲 (3) 575 (2) 乙	h/mm 型 铧 (h+H)/mm (1) 645 (1) 甲 (1) 1220 (1) 645 (2) 乙 (2) 1145 (1) 645 (3) 丙 (3) 1075 (2) 605 (1) 甲 (2) 1145 (2) 605 (2) 乙 (3) 1075 (2) 605 (3) 丙 (1) 1220 (3) 575 (1) 甲 (3) 1075 (3) 575 (2) 乙 (1) 1220

用 L₉(3⁴) 进行正交设计

区组列(干扰列)做为一个因素,放在第4列,

控制土壤条件不均的干扰,表头设计如表2-4。

分三个区组,每个区组三个组合处理。

同一水平各号试验为一个区组

不同水平即为不同区组,如

I		II	III
软	→		硬

表 2-5	各区组试验号
-------	--------

区组	试验号
I	1,5,9
II	2,6,7
Ш	3,4,8

各区组试验设计 随机化+人工调整 (区组间B水平更换)

		表 2→ 载天	、研除试验万条が	结果分析
因素	(1) A	(2) B	(3) C	(4)
试验号	h/mm	犁铧	(h+H)/mm	区 组
1	(1) 645	(1) 甲	(1) 1220	(1)
2	(1) 645	(2) 乙	(2) 1145	(2)
3	(1) 645	(3) 丙	(3) 1075	(3)
4	(2) 605	(1) 甲	(2) 1145	(3)
5	(2) 605	(2) 乙	(3) 1075	(1)
6	(2) 605	(3) 丙	(1) 1220	(2)
7	(3) 575	(1) 甲	(3) 1075	(2)
8	(3) 575	(2) 乙	(1) 1220	(3)

(3) 丙

(2) 1145

(1)

表 2-6 两种试验顺序比较

(3) 575

I	II	III	I	II	III
(1) 1, 5, 9	2, 6, 7	3, 4, 8	1, 5, 9	⇒ 2, 6, 7 =	⇒ 3, 4, 8
I	Ш	II	II	III	I
(2) 5, 1, 9	3, 4, 8	2, 6, 7	→ 7, 6, 2 —	→ 8, 4, 3 —	→ 9, 1, 5
松软					→ 坚 硬

由此方案试验,结果见表2-4

表 2-4 最大耕深试验方案及结果分析

因素	(1) A	(2) B	(3) C	(4)	y_i
试验号	h/mm	犁 铧	(h+H)/mm	区 组	实测值/cm
1	(1) 645	(1) 甲	(1) 1220	(1)	21. 3
2	(1) 645	(2) 乙	(2) 1145	(2)	22. 5
3	(1) 645	(3) 丙	(3) 1075	(3)	23. 9
4	(2) 605	(1) 甲	(2) 1145	(3)	17. 3
5	(2) 605	(2) 乙	(3) 1075	(1)	24. 4
6	(2) 605	(3) 丙	(1) 1220	(2)	23.6
7	(3) 575	(1) 甲	(3) 1075	(2)	24. 2
8	(3) 575	(2) 乙	(1) 1220	(3)	19. 5
9	(3) 575	(3) 丙	(2) 1145	(1)	23. 7

表 2-5 各区组试验号

区组	试验号
I	1,5,9
II	2,6,7
Ш	3,4,8

控制干扰的三个基本措施:

区组 3个

重复试验 两次

随机化措施区组间、区组内、重复试验

这样,区组内土壤条件基本一样

区组间土壤条件的差异,则是水平变化所致;

从区组概念看是区组不同,是试验条件有差异,

这种差异可以通过统计分析进行矫正。

结果分析时,对数据进行矫正,消除干扰影响。 具体矫正方法:

1.求试验指标的总平均 \overline{y}

$$\overline{y} = \sum_{i=1}^{9} \frac{y_i}{9} = \frac{194.7}{9} = 21.93$$

y 一指标总平均值。

y 为试验条件均匀一致,即各区组间无差异时,各试验因素都取平均水平时的试验指标值,它是比较因素效应,交互作用效应和区组效应的统一基准。

2.计算区组列各区组对应的试验指标平均值 \bar{y}_k

$$\overline{y}_1 = (y_1 + y_5 + y_9)/3 = 23.13$$
 $\overline{y}_2 = (y_2 + y_6 + y_7)/3 = 22.43$
 $\overline{y}_3 = (y_3 + y_4 + y_8)/3 = 20.23$
 $R_4 = 23.13 - 20.23 = 2.9$

区组列的极差 $R_4 > R_A > R_C$,说明干扰较大

表 2-4 最大耕深试验方案及结果分析

<u> </u>				~-H 31933 (31	
因素	(1) A	(2) B	(3) C	/(4) \	y_i
试验号	h/mm	犁铧	(h+H)/mm	区 组	实测值/cm
1	(1) 645	(1) 甲	(1) 1220	(1)	21.3
2	(1) 645	(2) 乙	(2) 1145	(2)	22. 5
3	(1) 645	(3) 丙	(3) 1075	(3)	23. 9
4	(2) 605	(1) 甲	(2) 1145	(3)	17.3
5	(2) 605	(2) 乙	(3) 1075	(1)	24. 4
6	(2) 605	(3) 丙	(1) 1220	(2)	23. 6
7	(3) 575	(1) 甲	(3) 1075	(2)	24. 2
8	(3) 575	(2) 乙	(1) 1220	(3)	19. 5
9	(3) 575	(3) 丙	(2) 1145	(1)	23. 7
y_{j1}	67.7	59. 8	64.4	69. 4	9
y_{j2}	65. 3	66. 4	63. 5	67. 3	$\sum_{i=1} y_i = 200.$
y_{j3}	64. 4	71. 2	69. 5	60. 7	
\bar{y}_{j1}	22. 57	19. 93	21. 47	23. 13	$\gamma_k = \bar{\gamma}_k - \frac{1}{2}$ $\gamma_1 = 23.1$
\bar{y}_{j2}	21. 77	22. 13	21. 17	22. 43	= 0.86
$ar{y}_{j3}$	21. 47	23. 73	23. 17	20. 23	$\gamma_{\text{II}} = 22.4$
R_{j}	1. 1	3. 8	2. 0	2.9	= 0. 16
优水平	A_1	B_3	C_3		$\gamma_{\overline{\underline{\underline{u}}}}=20.2$
主次因素		В, С	· · · · · · · · · · · · · · · · · · ·		= -2.
	A ₁		· · · · · · · · · · · · · · · · · · ·		

3.计算各区组效应 $\gamma_k = \overline{y}_k - \overline{y}$

$$\gamma_1 = \overline{y}_1 - \overline{y} = 1.20$$

$$\gamma_2 = \overline{y}_2 - \overline{y} = 0.50$$

$$\gamma_3 = \overline{y}_3 - \overline{y} = -1.70$$

 γ_k 一第K区组试验指标均值与总平均 \bar{y} 的差值 表明各区组间试验条件的差异大小;

 $\gamma_k > 0$ 表明该区组土壤较软,使最大耕深增值;

 $\gamma_k < 0$ 表明该区组土壤较硬,使最大耕深减值。

各区组效应总和为零

$$\sum_{i=k}^{k} \gamma_k = 0$$

4.计算试验指标矫正值

$$y'_{i} = y_{i} - \gamma_{k}$$

$$y'_{1} = y_{1} - \gamma_{1} = 21.3 - 1.2 = 20.1$$

$$y'_{2} = y_{2} - \gamma_{2} = 22.5 - 0.5 = 22.0$$

$$y'_{3} = y_{3} - \gamma_{3} = 23.9 - (-1.7) = 25.6$$

指标矫正值 = 实测值 - 区组的效应

土壤较软使最大耕深增加的区组就减去该增值土壤较硬使最大耕深减值的区组就加上该减值

最后以矫正值为准,进行结果分析处理,如表2-4。


表 2-4	最大耕深试验方案及结果分析
双 4	取入树床风湿刀条及绍来竹析

				- H-11-00 M1		/ \
因素	(1) A	(2) B	(3) C	(4)	y_i	y_i'
试验号	h/mm_	犁 铧	(h+H)/mm	区 组	实测值/cm	矫正值cm
1	(1) 645	(1) 甲	(1) 1220	(1)	21.3	20. 44
2	(1) 645	(2) 乙	(2) 1145	(2)	22. 5	22. 34
3	(1) 645	(3) 丙	(3) 1075	(3)	23. 9	25. 94
4	(2) 605	(1) 甲	(2) 1145	(3)	17. 3	19. 34
5	(2) 605	(2) 乙	(3) 1075	(1)	24. 4	23. 54
6	(2) 605	(3) 丙	(1) 1220	(2)	23. 6	23. 44
7	(3) 575	(1) 甲	(3) 1075	(2)	24. 2	24. 04
8	(3) 575	(2) 乙	(1) 1220	(3)	19. 5	21. 54
9	(3) 575	(3) 丙	(2) 1145	(1)	23. 7	22. 84
y_{j1}	67. 7	59.8	64.4	69. 4	9	
<i>y_{j2}</i>	65. 3	66. 4	63. 5	67.3	$\sum_{i=1} y_i = 200.4$	$\bar{y} = 22.27$
y_{j3}	64. 4	71. 2	69. 5	60. 7	$\gamma_k = \bar{\gamma}_k - 1$	
\bar{y}_{j1}	22. 57	19. 93	21. 47	23. 13	$\gamma_k - \gamma_k $	
\bar{y}_{j2}	21. 77	22. 13	21. 17	22. 43	= 0.86	
\bar{y}_{j3}	21. 47	23. 73	23. 17	20. 23	$\gamma_{\mathrm{II}} = 22.43$	3 - 22. 27
R_{j}	1. 1	3.8	2. 0	2. 9	= 0.16	
优水平	A_1	B_3	C_3		$\gamma_{\overline{\mathbf{n}}}=20.23$	
主次因素		В, (C, A		= -2.0	4

§ 2.5 两向干扰控制蕌

两向干扰:

两种干扰,如试验地块两个方向土质不均 一般有多种干扰,选择主要的加以控制 控制两向干扰需占两列,称为干扰列或区组列

控制两向干扰需占两列,称为干扰列或区组列 两方向都是不完全区组设计 两方向区组数不一定相等

等水平时,两向区组数=水平数

混合型正交表进行设计时,则不一定相等设计时需列出两向干扰控制表

例2-5 在非路面条件下进行某越野汽车的通过性试验,重点考察轮胎的结构参数和工作参数,试 验因素及其水平如表3-7所示,交互作用均可忽略,试验指标为滑转率δ。

试验因素及其水平如表2-7所示,交互作用均可忽略,试验指标为滑转率δ。

表 3-7 汽车通过性试验因素水平表							
水平素	A 轮胎花纹	B 轮胎气压(P _a)	C 轮胎载荷(t)	D 轮胎宽度(in)			
1	越野!	3.5 × 10 ⁵	1.0	10			
2	越野!	4. 5 × 10 ⁵	1. 5	9. 75			

第三章 试验干扰控制

两项干扰:

G₁一不同车辆和人员

G。一试验场地坚实度不同

表头设计:

先安排因素后安排干扰

安排时,尽量使水平难换的因素减少水平更

换次数

选用 $L_8(2^7)$

试验因素→1、2、3、4列

试验干扰→5、6、7 列中任两列

考虑到A和D更换水平困难, $G_1 \rightarrow 5$ 列最后 $G_2 \rightarrow 6$ 列。

试验方案如表2-8所示。

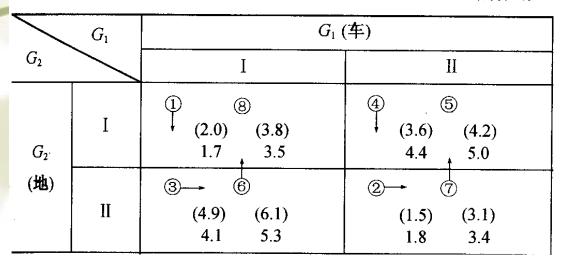
表 2-8 汽车轮胎试验方案及结果分析

						-	
因素		(2) B	(3) C	(4) D	G_1	G_2	
试验号	花 纹	气压/10 ⁵ Pa	载荷/t	宽度/mm	(5)	(6)	(7)
1	(1) 越野 I	(1) 3.5	(1) 1.0	(1) 254	(1)	(1)	1
2	(1) 越野 I	(1) 3.5	(1) 1.0	(2) 248	(2)	(2)	2
3	(1) 越野 I	(2) 4.5	(2) 1.5	(1) 254	(1)	(2)	2
4	(1) 越野 I	(2) 4.5	(2) 1.5	(2) 248	(2)	(1)	1
5	(2) 越野Ⅱ	(1) 3.5	(2) 1.5	(1) 254	(2)	(1)	2
6	(2) 越野Ⅱ	(1) 3.5	(2) 1.5	(2) 248	(1)	(2)	1
7	(2) 越野Ⅱ	(2) 4.5	(1) 1.0	(1) 254	(2)	(2)	1
8	(2) 越野Ⅱ	(2) 4.5	(1) 1.0	(2) 248	(1)	(1)	2

试验方案编制好后,还应列出两向干扰控制表

两干扰列不同组合, $\rightarrow G_1$ 、 G_2 的二元表

表 2-9 两向干扰控制表及指标矫正


	G_1	G_1 (\maltese)				
G_2		Ι	II			
G_{2}	I	① 8 (2.0) (3.8) 1.7 3.5	(3.6) (4.2) 4.4 5.0			
(地)	II	③→ ⑥ (4.9) (6.1) 4.1 5.3	② · ⑦ (1.5) (3.1) 1.8 3.4			

两向干扰控制表: 直观形象

便于实施和控制

对指标进行两向矫正

表 2-9 两向干扰控制表及指标矫正

试验时必须按此表实施,如:

G₁区组内第1辆车的试验顺序是①→③→⑥→⑧

 G_1 区组内第2辆车的试验顺序是 $4 \rightarrow 2 \rightarrow 7 \rightarrow 5$

若重复试验,再实施表3-9。但试验顺序要随机化

结果分析时,对指标值进行两向矫正:

1.计算总平均

$$\overline{y} = \frac{1}{8} \sum y_i = 3.65$$

2.干扰各区组的对应指标和 K_{li} 、 K_{2j}

其中:下标1一干扰G₁

下标2一干扰G₂

下标i,j一干扰G的第i、j个区组

表 2-9 两向干扰控制表及指标矫正

	G_1	G_1	(车)	v		
G_2		I	II	$ K_{2j}$	k_{2j}	$oldsymbol{\gamma}_{2j}$
G_{2}	I	① ⑧ (2.0) (3.8) 1.7 3.5	(3.6) (4.2) 4.4 5.0	13.6	3.4	-0.25
(地)	II	③→ ⑥ (4.9) (6.1) 4.1 5.3	②— ⑦ (1.5) (3.1) 1.8 3.4	15.6	3.9	0.25
K k Y		16.8 4.2 0.55	12.4 3.4 -0.55	$\sum_{i=1}^{8}$	$ \frac{1}{y_i} = 29.5 $ $ \overline{y} = 3.65 $	

$$K_{11} = y_1 + y_3 + y_6 + y_8 = 16.8$$

$$K_{12} = y_2 + y_4 + y_5 + y_7 = 12.4$$

$$K_{21} = y_1 + y_4 + y_5 + y_8 = 13.6$$

$$K_{22} = y_2 + y_3 + y_6 + y_7 = 15.6$$

3、 K_{1i} 、 K_{2j} 的平均值 k_{1i} 、 k_{2j} 。

$$k_{11} = K_{11}/4 = 16.8/4 = 4.2$$

 $k_{12} = K_{12}/4 = 12.4/4 = 3.1$
 $k_{21} = K_{21}/4 = 13.6/4 = 3.4$
 $k_{22} = K_{22}/4 = 15.6/4 = 3.9$

3.计算各区组的效应 γ_{1i}, γ_{2i}

区组效应=各区组指标平均值 k_{ii} 一总平均 \bar{y}

$$\gamma_{11} = k_{11} - \bar{y} = 4.20 - 3.65 = 0.55$$

$$\gamma_{12} = k_{12} - \bar{y} = 3.10 - 3.65 = -0.55$$

$$\gamma_{21} = k_{21} - \bar{y} = 3.40 - 3.65 = -0.25$$

$$\gamma_{22} = k_{22} - \overline{y} = 3.90 - 3.65 = 0.25$$

$$\sum \gamma_{2j} = 0$$

4.两向矫正

矫正值=实测值 $-G_1$ 效应 $-G_2$ 效应

$$y_1' = y_1 - \gamma_{11} - \gamma_{21} = 2.0 - 0.55 - (-0.25) = 1.70$$

$$y_4' = y_4 - \gamma_{12} - \gamma_{21} = 3.6 - (-0.55) - (-0.25) = 4.40$$

•••••

$$y_8' = y_8 - \gamma_{11} - \gamma_{21} = 3.8 - 0.55 - (-0.25) = 3.50$$

y_i' →试验指标→结果分析

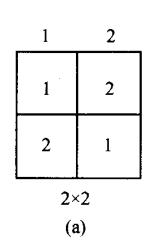

结果表明,两种干扰影响较大,甚至大于因素B、D。

表 2-8 汽车轮胎试验方案及结果分析

						•			
因素	(1) A	(2) B	(3) C	(4) D	G_1	G_2		δ	/%
试验号	花纹	气压/10 ⁵ Pa	载荷/t	宽度/mm	(5)	(6)	(7)	y_i	y_i'
· 1	(1) 越野 [(1) 3.5	(1) 1.0	(1) 254	(1)	(1)	1	2. 0	1. 7
2	(1) 越野 I	(1) 3.5	(1) 1.0	(2) 248	(2)	(2)	2	1.5	1.8
3	(1) 越野 I	(2) 4.5	(2) 1.5	(1) 254	(1)	(2)	2	4. 9	4. 1
4	(1) 越野 I	(2) 4.5	(2) 1.5	(2) 248	(2)	(1)	1	3.6	4. 4
5	(2) 越野Ⅱ	(1) 3.5	(2) 1.5	(1) 254	(2)	(1)	2	4. 2	5. 0
6	(2) 越野Ⅱ	(1) 3.5	(2) 1.5	(2) 248	(1)	(2)	1	6. 1	5. 3
7	(2) 越野Ⅱ	(2) 4.5	(1) 1.0	(1) 254	(2)	(2)	1	3. 1	3.4
8	(2) 越野Ⅱ	(2) 4.5	(1) 1.0	(2) 248	(1)	(1)	2	3. 8	3. 5
y_{j1}	12. 0	13. 8	10. 4	14. 2	16. 8	13.6	14. 8	8	
y_{j2}	17. 2	15. 4	18.8	15. 0	12. 4	15.6	14.4	$\sum_{i=1} y_i =$: 29. 2
$ar{\hat{y}}_{j1}$	3. 0	3. 45	2. 6	3. 55	4. 2	3.4	3.7	$\bar{y} = 3$	3. 65
$ar{y}_{j2}$	4. 3	3. 85	4. 7	3.75	3. 1	3.9	3.6		
R_{j}	1.3	0.4	2. 1	0. 2	1. 1	0.5	0.1		
优水平	A_1	B_1	C_1	D_1		•	İ		
主次因素			C,A,G_1,G_2	,B,D					

2.4.2 拉丁方区组设计

1、拉丁方

1	2				
A	В				
В	A				
2×2					
(b)					

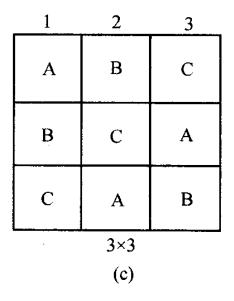


图 2-3 拉丁方

拉丁方

第二章 试验干扎

图 2-5 四阶超方

2、拉丁方区组设计

例2-6 犁铧耐磨试验,因素水平如表所示,试验指标为每片犁铧耕地亩数。

表 2-10 因素水平表

水平	犁 铧 材 质
1	高钼铸铁 (hMo)
2	钼钒铸铁 (MoV)
3	高铬铸铁 (hCr)

两相干扰:土壤条件和犁片位置 三水平因素(三种犁片),三台拖拉机 故选用3×3拉丁方进行方案设计

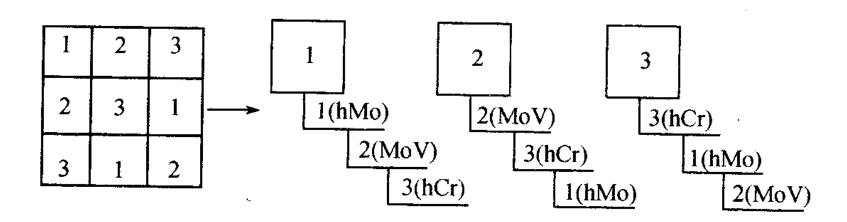


图 2-6 耕地试验实物方案

三台拖拉机各自记录耕地亩数,填入试验方案

表 2-11	耕地试验方案及结果分析
	1/1/10/10/10/10/10/10/10/10/10/10/10/10/

G_1							
G_2		I	П	Ш	K_{2j}	k_{2j}	$oldsymbol{\gamma}_{2j}$
G_2	I	(1) 110	(2) 70	(3) 144	324	108	-6
· (铧别)	П	(2) 114	(3) 56	(1) 172	342	114	0
(护力) ————————————————————————————————————	П	(3) 85	(1) 60	(2) 215	360	120	6
k_{1i} 103		309	186	531			
		103	62	177	$\sum_{i=1}^{9} y_i = 1026$ $\bar{y} = 114$		
		-11	-52	63			

试验指标直接计算其平均值即可

$$y_1 = (110 + 172 + 60)/3 = 114$$

$$y_2 = (70+114+215)/3=133$$

$$y_3 = (144 + 56 + 85)/3 = 95$$

2.5 尤登方区组设计

1、尤登方

图 2-8 K'×K 尤登方

例2-7 冬小麦施氮肥试验,比较5种因素对小麦产量的影响。采用4×5尤登方控制土壤条件的纵、横两相干扰。试验方案及结果见表。

表 2-12 冬小麦试验方案及结果分析

G_2		G ₁ (纵向)					v	,		- D
		I	II	Ш	IV_	· V	K_{2j}	k_{2j}	$oldsymbol{\gamma}_{2j}$	R_{G_2}
		E	\boldsymbol{C}	\boldsymbol{A}	D	В				
	1	74. 12	66. 80	44. 57	64. 60	62. 90	305. 1	61.02	-1.58	
		(72. 2)	(55.4)	(36.6)	(47.9)	(73.0)		-		
		A	D	С	В	E				
	II	48. 64	68. 62	65. 09	61.92	68. 72	253. 5	50. 7	-11.90	18. 83
G ₂		(36.4)	(46.9)	(46.8)	(54.9)	(68.5)				
(横 向)		. C	В	E	A	D				
N /	II	65. 52	59. 10	71.67	56. 30	60. 40	344. 6	68. 92	6. 33	
		(71.5)	(55.6)	(71.6)	(67.5)	(78.4)				
		В	A	D	E	С				
	IV	62. 10	55. 88	69. 05	67. 58	58. 38	348.7	69. 74	7. 15	
		(68.9)	(53.2)	(69.8)	(79.6)	(77.2)				
K	1i	249. 00	211. 10	224. 80	269. 90	297. 10	$\sum_{i=1}^{4} \sum_{j=1}^{5}$	$y_{ij} = 125$	51. 90	•
R	1i	62. 25	52. 78	56. 20	67. 48	74. 28	$\bar{y} = 62.$			
ν_1	l <i>i</i>	-0.35	-9.82	-6.40	4. 88	11. 68 (R _{处理} =	19, 18	•	
R	ç ₁			21. 50)					

本章小结

试验干扰控制设计的基本原则蕌

三个基本原则:

设置区组

重复试验

随机化措施

单向干扰控制

双向干扰控制

完全区组设计

不完全区组设计

拉登方设计

尤登方设计

第三章 正交试验设计的方差分析

- 3.1 极差分析与方差分析
- 一、极差分析

优点: 直观、简便,

快速找出因素主次、优水平、较优组合

缺点: 末充分利用信息

不能估计试验误差,确定可信度

不能应用于回归分析与设计

二、方差分析

设 $y_1, y_2 \dots y_n$ (相互独立)

其方差:

$$\sigma^2 = \sum (y_i - \overline{y})^2 / f = \frac{S}{f}$$

 σ^2 - 方差(均方和、均方差),反映数据离散程度

S一偏差平方和

f一数据自由度

若 σ^2 = 因素 (交互作用) 部十误差部

F检验法: 对影响总偏差平方和的各因素和交互作用进行分析

- ▶估计试验误差并分析其影响
- ▶判断因素及其交互作用主次与显著性
- ▶给出结论的置信度
- ▶确定最优组合及置信区间

正交设计的方差分析,数据处理可进一步简化

3.2 基本方法(以等水平无重复为例)

一、计算项目

1、总偏差平方S、总自由度f

$$S = \sum_{i=1}^{a} (y_i - \overline{y})^2 = \sum_{i=1}^{a} y_i^2 - \frac{1}{a} (\sum_{i=1}^{a} y_i)^2$$
$$f = a - 1$$

其中: a一试验号,总试验次数 S一表明试验数据的总波动

2、列偏差平方和 S_j 及自由度 f_j

$$S_{j} = \frac{a}{b} \sum_{k=1}^{b} (\bar{y}_{jk} - \bar{y})^{2} = \frac{b}{a} \sum_{k=1}^{b} y_{jk}^{2} - \frac{1}{a} (\sum_{i=1}^{a} y_{i})^{2}$$
$$f_{j} = b - 1$$

其中:

 S_{j} 一第j列各水平对应试验指标平均值与总平均值的偏差平方和,表明该列水平变动对指标产生的效应

 y_{ik} - 第j列k水平指标总和

$$\bar{y}_{jk}$$
 - 第j列K水平指标的平均值, $\bar{y}_{jk} = \frac{y_{jk}}{a/b}$

b=2时, S_i 的计算可简化:

$$S_{j} = \frac{1}{a} (y_{j1} - y_{j2})^{2} = \frac{1}{a} \Delta_{j}^{2}$$
$$f_{j} = b - 1 = 1$$

其中: y_{j1} - 第j列1水平指标总和 y_{i2} - 第j列2水平指标总和

 S_{j} \longrightarrow 反映因素对指标的效应 S_{j} $\stackrel{\bigcirc}{\nabla}$ Σ_{j} Σ_{j}

3、 $S与S_j$ $f与f_j$ 之间的关系

$$egin{aligned} S &= \sum_{i=1}^c S_j = \sum_{C_{eta}} S_j + \sum_{C_{ar{\sim}}} S_j + \sum_{C_{ar{\sim}}} S_j \ f &= \sum_{i=1}^c f_j = \sum_{C_{ar{\leftarrow}}} f_j + \sum_{C_{ar{\sim}}} f_j + \sum_{C_{ar{\leftarrow}}} f_j \end{aligned}$$

式中:

(1) C_{B} 、 $C_{\hat{\text{C}}}$ 、 $C_{\hat{\text{C}}}$ 一因素、交互作用、空列在正交表中的列数 且 $C = C_{\text{B}} + C_{\hat{\text{C}}} + C_{\hat{\text{E}}}$

(2) 交互作用、空列有时占几列,则 S_i 、 f_i 为其之和

由S、 S_i 计算及其关系,实现了对S的分解

二、F检验

1.
$$F_{\text{tt}} = \frac{S_1/f_1}{S_2/f_2}$$

F_比为两个独立方差之比 可判断两个方差是否来自同一个母体 或有无差别。

若 $F_{\mathbb{H}} \leq 1$ 无差异,或来自同一母体

 $F_{\mathbb{H}}>1$ 可能有差异,差异显著与否与 $F_{\mathbb{H}}$ 有关 选显著性水平 α ,则 $F_{\alpha}(f_1,f_2)$

 $F_{\mathbb{H}} > F_{\alpha}(f_1, f_2)$ 则差异在 α 下显著 或置信度为 $(1-\alpha)$

附录 3 $F(f_1,f_2)$ 表

 $F(f_1, f_2)$ 表 $(\alpha = 0.25)$

 F检验
 1 177.71

F临界值

 $F_{\alpha}(f_1, f_2)$

- (11 30 2 /													
f_1	1	2	3	4	5	6	7	8	9	10	20	30	œ	f_1 f_2
1	5. 83	7. 56	8. 20	8. 58	8. 82	8. 98	9. 10	9. 19	9. 26	9. 32	9. 58	9. 67	9. 85	1
2	2. 57	3.00	3. 15	3. 23	3. 28	3. 31	3. 34	3. 35	3. 37	3. 38	3. 43	3. 44	3.48	2
3	2. 02	2. 28	2. 36	2. 39	2.41	2. 42	2. 43	2. 44	2.44	2. 44	2. 46	2.47	2. 47	3
4	1.81	2.00	2. 05	2.06	2. 07	2.08	2.08	2.08	2. 08	2. 08	2. 08	2.08	2.08	4
5	1.69	1. 85	1.88	1.89	1.89	1. 89	1.89	1.89	1.89	1. 89	1.88	1. 88	1.87	5
								. =0	1 66	1 55	1.76	1 75	1 74	6
6	1.62	1.76	1. 78	1. 79	1.79	1. 78	1. 78	1.78	1.77	1.77	1.76	1.75	1.74	
7	1. 57	1. 70	1.72	1. 72	1.71	1.71	1.70	1. 70	1.69	1.69	1. 67	1.66	1.65	7
8	1. 54	1.66	1.67	1.66	1.66	1.65	1.64	1.64	1.64	1. 63	1.61	1.60	1. 58	8
9	1.51	1.62	1. 63	1. 63	1. 62	1.61	1.60	1.60	1. 59	1. 59	1. 56	1.55	1. 53	9
10	1.49	1.60	1.60	1. 59	1. 59	1.58	1. 57	1.56	1.56	1. 55	1. 52	1. 51	1.48	10
11	1.47	1.58	1. 58	1.57	1.56	1.55	1.54	1. 53	1. 53	1. 52	1. 49	1.48	1.45	11
12	1.46	1.56	1. 56	1. 55	1.54	1.53	1. 52	1.51	1.51	1. 50	1. 49	1.45	1. 42	12
13	1.45	1.55	1.55	1. 53	1.52	1. 51	1.50	1.49	1.49	1.48	1. 45	1. 43	1.40	13
14	1. 43	1.53	1.53	1. 52	1.51	1.50	1.49	1. 48	1.47	1.46	1. 43	1.41	1.38	14
15	1. 43	1. 52	1. 52	1.51	1.49	1.48	1.47	1.46	1.46	1.45	1.41	1.40	1.36	15
13	1.43	1. 32	1. 32	1.51	1.47	1.40	1 ,	1						
16	1.42	1.51	1.51	1.50	1.48	1.47	1.46	1.45	1. 44	1.44	1.40	1.38	1. 34	16
17	1.42	1.51	1.50	1. 49	1.47	1.46	1. 45	1.44	1.43	1.43	1. 39	1. 37	1.33	17
18	1.41	1.50	1.49	1.48	1.46	1.45	1.44	1.43	1. 42	1. 42	1.38	1. 36	1. 32	18
19	1.41	1. 49	1.49	1. 47	1.46	1.44	1.43	1.42	1.41	1.41	1. 37	1. 35	1.30	19
20	1.40	1.49	1.48	1. 47	1.45	1.44	1.43	1.42	1.41	1.40	1. 36	1.34	1. 29	20
													1 22	20
30	1.38	1.45	1.44	1.42	1.41	1.39	1.38	1. 37	1.36	1. 35	1. 30	1. 28	1. 23	30
40	1. 36	1.44	1.42	1.40	1. 39	1. 37	1. 36	1.35	1. 34	1. 33	1. 28	1. 25	1. 19	40
60	1.35	1. 42	1.41	1. 38	1. 37	1. 35	1. 33	1. 32	1.31	1.30	1. 25	1. 22	1. 15	60
∞	1. 32	1.39	1. 37	1. 35	1. 33	1.31	1. 29	1. 28	1. 27	1. 25	1. 19	1.16	1.00	∞

二、F检验

F临界值

 $F_{\alpha}(f_1, f_2)$

$F(f_1, f_2)$ 表 $(\alpha = 0.10)$

<		,												
f_2	1	2	3	4	5	6	7	8	9	10	20	30	∞	f_1
1	39. 1	49. 5	53.6	55. 8	57. 2	58. 2	58. 9	59. 4	59. 9	60. 2	61. 7	62. 3	63.3	1
2	8. 53	9.00	9. 16	9. 24	9. 29	9. 33	9.35	9.37	9.38	9. 39	9. 44	9.46	9. 49	2
3	5. 54	5.46	5.39	5. 34	5.31	5. 28	5. 27	5. 25	5. 24	5. 23	5. 18	5. 17	5. 13	3
4	4. 54	4. 32	4. 19	4. 11	4. 05	4. 01	3. 98	3. 95	3.94	3. 92	3. 84	3. 82	3.76	4
5	4.06	3. 78	3.62	3. 52	3.45	3. 40	3. 37	3. 34	3. 32	3. 28	3. 21	3. 17	3. 11	5
6	3. 78	3.46	3. 29	3. 18	3. 11	3. 05	3.01	2. 98	2. 96	2. 94	2. 84	2. 80	2. 72	6
7	3. 59	3. 26	3. 07	2. 96	2. 88	2.83	2. 78	2.75	2. 72	2. 70	2. 59	2. 56	2. 47	7
8	3.46	3. 11	2. 92	2. 81	2.73	2. 67	2. 62	2. 59	2.56	2. 54	2. 42	2.38	2. 29	8
9	3. 36	3. 01	2.81	2. 69	2. 61	2. 55	2. 51	2. 47	2. 44	2. 42	2. 30	2. 25	2. 16	9
10	3. 29	2. 92	2. 73	2. 61	2. 52	2.46	2. 41	2. 38	2. 35	2. 32	2. 20	2. 16	2.06	10
11	3. 23	2. 86	2. 66	2. 54	2. 45	2. 39	2. 34	2. 30	2. 27	2. 25	2. 12	2.08	1. 97	11
12	3. 17	2. 81	2.61	2.48	2. 39	2. 33	2. 28	2. 24	2. 21	2. 19	2.06	2. 01	1.90	12
13	3. 14	2. 76	2. 56	2. 43	2. 35	2. 28	2. 23	2. 20	2. 16	2. 14	2. 01	1.96	1.85	13
14	3. 10	2. 73	2. 52	2. 39	2. 31	2. 24	2. 19	2. 15	2. 12	2. 10	1. 96	1. 91	1.80	14
- 15	3.07	2. 70	2. 49	2. 36	2. 27	2. 21	2. 16	2. 12	2.09	2.06	1. 92	1. 87	1. 76	15
16	3.05	2. 67	2.46	2. 33	2. 24	2. 18	2. 13	2.09	2.06	2. 03	1.89	1. 84	1. 72	16
17	3. 03	2. 64	2. 44	2.31	2. 22	2. 15	2. 10	2.06	2.03	2.00	1. 86	1.81	1.69	17
18	3. 01	2. 62	2. 42	2. 29	2. 20	2. 13	2. 08	2.04	2.00	1. 98	1. 84	1.78	1.66	18
19	2. 99	2. 61	2. 40	2. 27	2. 18	2. 11	2.06	2.02	1. 98	1.96	1.81	1. 76	1.63	19
20	2. 97	2. 59	2. 38	2. 25	2. 16	2. 09	2. 04	2.00	1.96	1. 94	1. 79	1. 74	1.61	20
30	2. 88	2. 49	2. 28	2. 14	2.05	1. 98	1. 93	1. 88	1.85	1. 82	1. 67	1.61	1.46	30
40	2. 84	2. 44	2. 23	2. 09	1. 97	1. 93	1.87	1.83	1. 79	1. 76	1.61	1. 54	1.38	40
60	2. 79	2. 39	2. 18	2. 04	1. 95	1. 87	1. 82	1.77	1. 74	1.71	1. 54	1.48	1. 29	60
<u> </u>	2.71	2.30	2.08	1. 94	1.85	1.77	1. 72	1.67	1.63	1.60	1. 42	1.34	1.00	

二、F检验

F临界值

 $F_{\alpha}(f_1, f_2)$

 $F(f_1, f_2)$ 表 $(\alpha = 0.05)$

f_1	1	2	3	4	5	6	7	8	9	10	20	30	∞	f_1 f_2
1	161	200	216	225	230	234	237	239	241	242	248	250	254	1
2	18. 51	19.00	19. 16	19. 25	19. 30	19. 33	19. 36	19. 37	19. 38	19. 39	19. 44	19. 46	19. 50	2
3	10. 13	9. 55	9. 28	9. 12	9. 01	8. 94	8. 88	8. 84	8. 81	8. 78	8. 66	8. 62	8. 53	3
4	7.71	6. 94	6. 59	6. 39	6. 26	6. 16	6.09	6. 04	6.00	5. 96	5.80	5. 74	5. 63	4
5	6. 61	5. 79	5. 41	5. 19	5. 05	4. 95	4. 88	4. 82	4. 78	4. 74	4. 56	4. 50	4. 36	5
6	5. 99	5. 14	4. 76	4. 53	4. 39	4. 28	4. 21	4. 15	4. 10	4. 06	3. 87	3. 81	3. 67	6
7	5. 59	4. 74	4. 35	4. 12	3. 97	3. 87	3. 79	3. 73	3.68	3. 63	3. 44	3.38	3. 23	7
8	5. 32	4. 46	4. 07	3. 84	3. 69	3. 58	3. 50	3. 44	3. 39	3. 34	3. 15	3.08	2. 93	8
9	5. 12	4. 26	3.86	3. 63	3.48	3. 37	3. 29	3. 23	3. 18	3. 13	2. 96	2. 86	2.71	9
10	4. 96	4. 10	3. 71	3. 48	3. 33	3. 22	3. 14	3. 07	3. 02	2. 97	2.77	2.70	2. 54	10
11	4. 84	3.98	3. 59	3. 36	3. 20	3. 09	3. 01	2. 95	2. 90	2. 86	2. 65	2. 57	2. 40	11
12	4. 75	3.88	3. 49	3. 26	3. 11	3.00	2. 92	2. 85	2.80	2. 76	2. 54	2.46	2. 30	12
13	4. 67	3. 80	3.41	3. 18	3. 02	2. 92	2. 84	2. 77	2.71	2. 67	2. 46	2. 38	2. 21	13
14	4. 60	3.74	3. 34	3. 11	2. 96	2. 85	2. 77	2. 70	2.65	2.60	2. 39	2. 13	2. 13	14
15	4. 54	3. 68	3. 29	3. 06	2. 90	2. 79	2. 70	2. 64	2. 59	2. 55	2. 33	2. 25	2. 07	15
16	4. 49	3. 63	3. 24	3. 01	2. 85	2. 74	2. 66	2. 57	2. 54	2. 49	2. 28	2. 20	2. 01	16
17	4. 45	3. 59	3. 20	2. 96.	2. 81	2. 70	2.62	2. 55	2. 50	2. 45	2. 23	2. 15	1. 96	17
18	4.41	3. 55	3. 16	2. 93	2.77	2.66	2. 58	2. 51	2.46	2. 41	2. 19	2. 11	1. 92	18
19	4. 38	3, 52	3. 13	2. 90	2. 74	2. 63	2. 55	2.48	2. 43	2. 38	2. 15	2. 07	1.88	19

2、检验各因素及其交互作用对指标影响显著性

$$F_{\text{tt}} = \frac{S_A/f_A}{S_e/f_e} > F_{\alpha}(f_A, f_e)$$

则在显著性水平 α 下差异显著,因素A对y影响显著 否则,A对y影响不显著

一般,显著性水平 α	置信度 $(1-\alpha)$
α =0.25	75%
$\alpha = 0.1$	90%
$\alpha = 0.05$	95%

3、 S_e 、 f_e 的计算

$$S_e = \sum_{\Xi} S_e \qquad f_e = \sum_{\Xi} f_e$$

- 1) 若某因素或交互作用列较小,可归入 Se 一般,对显著性水平>0.25的项进行归并
- 2)通常,选正交表,应留有空列, $f_e \ge 2$
- 3)或由经验值估计 σ^2

说
$$f_e = \infty$$
, $F_A = \frac{S_A/f_A}{\sigma^2}$, $F_\alpha(f_A, \infty)$

3、求最优组合及置信区间

- 1) 定最优组合
- > 应选显著因素优水平、交互作用的优搭配
- > 不显著因素,兼顾而选
- 2)求ŷ_优估计值

$$\hat{y}_{\text{th}} = \hat{\mu} + \hat{a}_i + \hat{b}_j + (\overline{ab})_{ij} + \cdots$$

$3、求误差限<math>\epsilon_d$

$$\varepsilon_d = \sqrt{F_{\alpha}(1, f_e + f'_e)[(S_e + S'_e)/(f_e + f'_e)\frac{N}{1 + f^*}]}$$

 f_e' 一不显著因素及交互作用自由度之和

S'_一不显著因素及交互作用偏差平方和之和

N一总试验次数

f*一显著因素及交互作用自由度之和

4、在置信度 $(1-\alpha)$ 下:

$$y_{\text{th}} = \hat{y}_{\text{th}} \pm \varepsilon_d$$

例3-1 对例1-5中拖拉机噪声试验中的数据做方差分析

例1-5 考察拖拉机在不同作业速度下某些部件对驾驶员耳旁噪声的影响。拟定的试验因素及其水平如表1-12所列,并要求考虑*A×B、A×C*的影响。试验指标为耳旁噪声,且指标值越小越好。

表 1-12 因素水平表

水平菜	速度 A(Km/h)	驾驶室 <i>B</i>	轮胎 €	风 扇
1		开式	通用加宽	改进型
2	□档	闭式	越野	普通型

试验指标为分贝值

采用噪声计测量。

试验方案及试验结果见表3-1

其中试验指标

$$y_i' = y_i - 90$$

 $y_i'^2 = (y_i - 90)^2$

是对试验数据做变换处理,以简化和便于计算

表 3-1 拖拉机噪声试验结果及方差分析

因素	A (1)	<i>B</i> (2)	$A \times B$ (3)	C (4)	$A \times C$ (5)	(6)	D (7)	y_i/dB	$y_i - 90$	$(y_i - 90)^2$
试验号	(1)	(2)	(3)	(+)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
1	1	1	1	1	1	1	1	92	2	4
2	1	1	1	2	2	2	2	98	8	64
3	1	2	2	1	1	2	2	94	4	16
4	1	2	2	2	2	1	1	97	7	49
5	2	1	2	1	2	1	2	94	4	16
6	2	1	2	2	1	2	1	93	3	9
7	2	2	1	1	2	2	1	86	-4	16
8	2	2	1	2	1	1	2	91	1	1

1、计算
$$\sum_{i=1}^{a} y_i', \sum y_i'^2, S$$

$$2$$
、计算各列 S_j , f_j 1)计算 y_{ik}

若为三水平:
$$y_{j1}, y_{j2}, y_{j3}$$

若为二水平:
$$y_{j1}, y_{j2}$$

对本例:

表 3-1 拖拉机噪声试验结果及方差分析

	表 3-1 抱拉机柴户风驱给未及万左万仞											
因素	A	В	$A \times B$	С	$A \times C$		D	y_i/dB	00	(00)2		
试验号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	y _i /ub	$y_i - 90$	$(y_i-90)^2$		
1	1	1	1	1	1	1	1	92	2	4		
2	1	1	1	2	2	2	2	98	8	64		
3	1	2	2	1	1	2	2	94	4	16		
4	1	2	2	2	2	1	1	97	7	49		
5	2	1	2	1	2	1	2	94	4	16		
6	2	1	2	2	1	2	1	93	3	9		
7	2	2	1	1	2	2	1	86	-4	16		
8	2	2	1	2	1	1	2	91	1	1		
Уjl	21	17	7	6	10	14	8	$\sum_{i=1}^{8} (y_i - 90)$	$= 25 \sum_{i=1}^{8} (y^{i})^{2}$	$(i - 90)^2 = 175$		
y_{j2}	4	8	18	19	15	11	17	8	2 1 / 2	3 \ 2		
Δ_j	17	9	11	13	5	3	9	$S = \sum_{i=1}^{n}$	$y_i^2 - \frac{1}{8} \left(\sum_{i=1}^{8} \frac{1}{8} \right)^{-1}$	$\left\{ \sum_{i=1}^{n} y_i \right\}$		
Δ_j^2	289	81	121	169	25	9	81	= 175	$-\frac{1}{8}\times25^2$	= 96. 88		
Δ_j^2 S_f F_j α_j	36. 13	10. 13	15. 13	21. 13	3. 13	1. 13	10. 13		$S_{2} + S_{2} = 4.$			
F_j	16. 96	4. 76	7. 10	9. 92		_	4. 76	$f_e = 2$	· ±			
α_j	0. 1	0. 25	0. 25	0. 1			0. 25	J * -				

$$y_{A1} = y_1 + y_2 + y_3 + y_4 = 2 + 8 + 4 + 7 = 21$$

 $y_{A2} = y_5 + y_6 + y_7 + y_8 = 4 + 3 + (-4) + 1 = 4$

2)计算 S_i

$$S_{j} = \frac{b}{a} \sum_{j=1}^{b} y_{jk}^{2} - \frac{1}{a} (\sum_{i=1}^{a} y_{i})^{2}$$

对二水平:

$$S_j = \frac{1}{a}(y_{j1} - y_{j2})^2 = \frac{1}{a}\Delta_j^2$$

故在表中列出 $\Delta_j, \Delta_j^2, S_j$ 项

3)计算各列 f_j

$$f_j = b - 1 = 2 - 1 = 1$$

- 3、查取F临界值 $F_{\alpha}(f_j, f_e)$
 - 1)判断、归并因素或交互作用中 S_j 较小项 $\Rightarrow S_e$

如
$$S_{A\times C}=3.13$$

判断:
$$F_{A \times C} = \frac{S_{A \times C} / f_{A \times C}}{S_{\stackrel{\sim}{\Xi}} / f_{\stackrel{\sim}{\Xi}}} = 2.77 < F_{0.25}(1,1) = 5.83$$

表 3-1 拖拉机噪声试验结果及方差分析

				_ ,e,_		- 1-4-3-T -b	4 > 1 > 1 > 1 > 1 > 1	3 SE 23 (V)		
因素	A	В	$A \times B$	С	$A \times C$		D	y_i/dB	a90	(00)2
试验号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	y_i / db	y _i – 30	$(y_i - 90)^2$
1	1	1	1	1	1	1	1	92	2	4
2	1	1	1	2	2	2	2	98	8	64
3	1	2	2	1	1	2	2	94	4	16
4	1	2	2	2	2	1	1	97	7	49
5	2	1	2	1	2	1	2	94	4	16
6	2	1	2	2	1	2	1	93	3	9
7	2	2	1	1	2	2	1	86	-4	16
8	2	2	1	2	1	1	2	91	1	1
y_{j1}	21	17	7	6	10	14	8	$\sum_{i=1}^{8} (y_i - 90)$	$=25 \sum_{i=1}^{8} (y^{i})^{2}$	$(i_i - 90)^2 = 175$
$y_{\bar{p}}$	4	8	18	19	15	11	17			
Δ_j	17	9	11	13	5	3	9	$S = \sum_{i=1}^{n} a_i$	$y_i^2 - \frac{1}{8} \left(\sum_{i=1}^{8} \frac{1}{8} \right)^{-1}$	$\sum_{i=1}^{n} y_i$
Δ_j^2	289	81	121	169	25	9	81	= 175	$-\frac{1}{8}\times25^2$	= 96.88
S_f	36. 13	10. 13	15. 13	21. 13	3. 13	1. 13	10. 13		8	
F_j	16. 96	4. 76	7. 10	9. 92		_	4. 76	$f_e = 2$		
α_{j}	0. 1	0. 25	0. 25	0. 1	—		0. 25			
•										

$$S_e = S_{\cong} + S_{A \times C} = 1.13 + 3.13 = 4.26$$

$$f_e = f_{\cong} + f_{A \times C} = 1 + 1 = 2$$

4、定各因素或交互作用显著性水平 α_j

$$F_j > F_{\alpha}(f_j, f_e)$$
 则在 α_j 下显著
$$F_j < F_{\alpha}(f_j, f_e)$$
 则在 α_j 下不显著

因素及交互作用显著性水平见表3-2

表 3-2 方差分析表

方差来源	偏差平方和	自由度	均方和	$F_{1\!\!1}$	显著性水平 α
A	$S_A = 36.13$	1	36. 13	16. 96	0. 1
В	$S_B = 10.13$	1	10. 13	4. 76	0. 25
$A \times B$	$S_{A\times B}=15.\ 13$	1	15. 13	7. 10	0. 25
\boldsymbol{C}	$S_c = 21.13$	1	21. 13	9. 92	0. 1
D	$S_D = 10.13$	1	10. 13	4. 76	0. 25
误差	$S_e = 4.26$	2	2. 13		
		_	$F_{0.25}(1,2) = 2.57$	$F_{0.1}(1,2) = 8.$. 53
总 和	S = 96.91	7	$F_{0.05}(1,2) = 18.5$		

 $F(f_1, f_2)$ 表 $(\alpha = 0.25)$

•	1 2 2			
f_1	1	2	3	4
1	5. 83	7.56	8. 20	8. 58
2 (2. 57	3.00	3. 15	3. 23
3	2. 02	2. 28	2.36	2. 39
4	1.81	2.00	2. 05	2.06
5	1.69	1. 85	1. 88	1. 89

 $F(f_1, f_2)$ 表 $(\alpha = 0.10)$

f_1	1	2	3	4
1	39. 1	49. 5	53.6	55.8
2 (8. 53	9.00	9. 16	9. 24
3	5. 54	5.46	5.39	5. 34
4	4. 54	4. 32	4. 19	4. 11
5	4. 06	3. 78	3. 62	3. 52

 $F(f_1, f_2)$ 表 $(\alpha = 0.05)$

f_1	1	2	3	4	
1	161	200	216	225	
2 (18. 51	19.00	19. 16	19. 25	
3	10. 13	9. 55	9. 28	9. 12	
4	7.71	6. 94	6. 59	6. 39	
5	6. 61	5. 79	5. 41	5. 19	

5、求最优组合及置信区间

1)选显著因素优水平及交互作用优搭配(二元表)

若二者矛盾,应选优搭配,如: A_2 、 C_1

不显著因素,可兼顾而选,如: B_2 、 D_1

:优组合为 $A_2B_2C_1D_1$

2)求ŷ_忧的估计值

$$\hat{y}_{ff} = \hat{\mu} + \hat{a}_2 + \hat{b}_2 + \hat{c}_1 + \hat{d}_1 + (ab)_{22} + (ac)_{21}$$

$$= 86.375$$

式中:
$$\hat{\mu} = \overline{y}$$

$$\hat{a}_2 = (\overline{y}_{A2} - \overline{y})$$

$$\hat{b}_2 = (\overline{y}_{B2} - \overline{y})$$

$$(ab)_{22} = \overline{y}_{A2 \times B2} - \hat{\mu} - \hat{a}_2 - \hat{b}_2$$

$$= 88.5 - 93.125 - (-2.125) - (-1.125)$$

$$= -1.375$$

$$\overline{y}_{A2 \times B2} = (y_7 + y_8)/2 = 88.125$$

3)、求误差限 ε_d

$$\varepsilon_d = \sqrt{F_{\alpha}(1, f_e + f'_e)[(S_e + S'_e)/(f_e + f'_e)\frac{N}{1 + f^*}]}$$

f;一不显著因素及交互作用自由度之和

 S'_e 一不显著因素及交互作用偏差平方和之和

N一总试验次数

f*一显著因素及交互作用自由度之和

对于本例式中各项如何确定?

对本例:

$$F_{\alpha}(1, f_e) = F_{0.1}(1, 2) = 4.06$$

 $f_e = f_{\cong} + f_{A \times C} = 2$
 $S_e = S_{\cong} + S_{A \times C} = 1.13 + 3.13 = 4.26$
 $f'_e = f_B + f_{A \times B} + f_D = 3$
 $S'_e = S_B + S_{A \times B} + S_D = 35.39$
 $N = 8$
 $f^* = f_A + f_C = 2$

$$\varepsilon_d = \sqrt{F_{\alpha}(1, f_e + f'_e)[(S_e + S'_e)/(f_e + f'_e)\frac{N}{1 + f^*}]}$$
= 3.47

4、在置信度 α =0.1下:

$$y_{tt} = \hat{y}_{tt} \pm \varepsilon_d$$

= 86.375 \pm 3.47

方差分析作业

为提高某产品合格率y(%),选择A、B、C三因素,用 L_9 (3⁴)正交表进行试验,A、B、C三个因素分别放在正交表第1、2、4列上,第3列为空列,试验结果依次为: 65、75、55、65、50、40、75、85、60

- 1、对试验结果进行方差分析
- 2、确定试验的最优组合
- 3、求最优组合的估计值及其置信区间

3.3 重复试验的方差分析

目的: 估计误差,提高精度、适应性和代表性

一般重复2~6次,

若重复T次(以3次为例,如例3-2)

主要区别:

1、数据总个数 = aT

$$S = \sum_{i=1}^{a} \sum_{t=1}^{T} (y_{it} - \overline{y})^{2}$$

$$= \sum_{i=1}^{a} \sum_{t=1}^{T} y_{it}^{2} - \frac{1}{aT} (\sum_{i=1}^{a} \sum_{t=1}^{T} y_{it})^{2}$$

$$= W - P$$

若重复T次(以3次为例,如例3-2)

表 3-3 电解腐蚀试验结果及方差分析

因素	A	В	c	D	$y_{ii}^{'} = (y_{ii} - 70)/5$				y'2		$y_{i\sum} = \sum_{i=1}^{T} y_{ii}$. 2	
试验号	(1)	(2)	(3)	(4)	$y_{i1}^{'}$	y' _{i2}	y' _{i3}	y'2	y'2 2	y'2 3	$y_i \sum = \sum_{t=1}^{n} y_{it}$	$y_i^2 \sum$	
1	1	1	1	1	-1	-2	0	1	4	0	-3	9	
2	1	2	2	2	0	- 1	3	0	1	9	2	4	
3	1	3	3	3	-1	0	2	1	0	4	1	1	
4	2	1	2	3	-3	-2	2	9	4	4	-3	9	
5	2	2	3	1	-4	-5	0	16	25	0	-9	81	
6	2	3	1	. 2	-6	-6	-6	36	36	36	-18	324	
7	3	1	3	2	4	0	- 1	16	0	1	3	9	
8	3	2	1	. 3	3	3	2	9	9	4	8	64	
9	3	3	2	1	-4	- 1	- 1	16	1	1	-6	36	
y_{j1}	0	-3	-13	-18	-12	-14	1	104	80	59	-25	537	
\mathcal{Y}_{j2}	-30	1	-7	-13	W =	$W = \sum_{i=1}^{a} \sum_{t=1}^{T} \gamma_{it}^{2} = 104 + 80 + 59 = 243$							
y_{j3}	5	-23	-5	6	P =	$\frac{1}{\pi} \left(\sum_{i=1}^{a} \sum_{j=1}^{a} \sum_{j=1}^{a} \sum_{j=1}^{a} \sum_{i=1}^{a} \sum_{j=1}^{a} \sum_{i=1}^{a} \sum_{j=1}^{a} \sum_{j=$	$\left(\sum_{i=1}^{T} y_{it}\right)^2 =$	$\frac{1}{27}$ × (-	$(25)^2 = 23$	3. 15			
y_{jl}^2	0	9	169	324	$P = \frac{1}{aT} \left(\sum_{i=1}^{a} \sum_{t=1}^{T} y_{it} \right)^{2} = \frac{1}{27} \times (-25)^{2} = 23.15$								
y_{j2}^{2}	900	1	49	169	$Q_j =$	$Q_j = \frac{b}{aT} \sum_{k=1}^b y_{jk}^2 = \frac{1}{9} \sum_{k=1}^3 y_{jk}^2$							
y_{j3}^2	25	529	25	36	$Z = \frac{1}{T} \sum_{i=1}^{a} \left(\sum_{t=1}^{T} y_{it} \right)^{2} = \frac{1}{3} \times 537 = 179$								
Q_j	102. 78	59. 89	27.00	58. 78	S =	W-P=2	43 - 23. 15	5 = 219.8	5 f	= 26			
S_j	79. 63	36. 74	3. 85	35. 63	1	•	$Q_j = 23.15$ 243 = 179		f_{j}	= 2 = 18			
F_j	11. 74	5. 41		5. 25	e2			0,	J e2	, 10			
$lpha_j$	0. 01	0. 05		0. 05		$F_{0.1}(2,20)$) = 2.59	$F_{0.05}$	(2,20) =	3.49,	$F_{0.01}(2,20) = 5.8$	5	

$$f = aT - 1$$

、每一水平的数据个数= $\frac{aI}{h}$

$$S_{j} = \frac{aT}{b} \sum_{k=1}^{b} (\overline{y}_{jk} - \overline{y})^{2}$$

$$= \frac{b}{aT} \sum_{k=1}^{b} y_{jk}^{2} - \left(\sum_{i=1}^{a} \sum_{t=1}^{T} y_{it}\right)^{2}$$

$$=Q-P$$

$$f_j = b - 1$$

3、重复试验将产生纯试验误差 S_{e_2} , f_{e_2}

$$S_{e_2} = \sum_{i=1}^{a} \sum_{t=1}^{T} (y_{it} - \overline{y}_i)^2$$

$$= \sum_{i=1}^{a} \sum_{t=1}^{T} y_{jt}^2 - \frac{1}{T} \sum_{i=1}^{a} (\sum_{t=1}^{T} y_{jt})^2$$

$$= W - Z$$

$$f_{e_2} = a(T-1)$$

则试验误差:

无空列时:
$$S_e = S_{e_2}$$
 $f_e = f_{e_2}$ 有空列时: $S_e = S_{e_1} + S_{e_2}$ $f_e = f_{e_1} + f_{e_2}$

$$S_{e_1}$$
 -包含隐藏重复的试验误差, $S_{e_1} = \sum_{\underline{\gamma}} S_{j}$

 S_{e_2} - 纯重复试验误差,客观反映试验误差

4、有重复时S与 S_j ,f与 f_j 的关系

$$S \neq \sum S_j$$

$$f \neq \sum f_j$$

但
$$S = \sum S_j + S_{e_2}$$

$$f = \sum f_j + f_{e_2}$$

3.4 不等水平试验的方差分析

需要根据设计方法的不同,具体问题具体分析。

主要注意点:

- (1) 因素水平不等,水平隐藏重复数不等;
- (2) 并列法因素自由度为所占列自由度之和;
- (3) $S和f与\Sigma S和\Sigma f$ 的关系

			1X 5-	ファンリノ	AWN				
因	素		A		В		$A \times B$		
列	号	1	2	3	4	5	6	7	

计划法设计

3.5 非饱和正交设计方差分析

非饱和表自由度减少,一般少用;

不能用空列直接计算Se

3.6 区组设计方差分析

拉丁方和尤登方按给定方法处理。

3.7 误差分析与试验水平

一、误差分析

误差。

模型误差e_m 纯试验误差e 整体误差{拟水平误差e_n 追加水平误差e_z 列外误差e_w

局部误差:取样误差es

整体误差

- 1、模型误差e_m: 空列误差,反映了试验误差及 未考察的因素或交互作用的效应。
- 2、纯试验误差e: 由重复试验得到的误差,反映了试验单元间的差异。
- 一般, 纯试验误差 e < 模型误差e_m

所以,若以试验误差e作为试验误差分析,可能会把显著因素判断为不显著因素。

- 3、拟水平误差en: 由拟水平产生的误差
- 4、追加试验误差ez:由追加法产生的试验误差。
- 5、列外误差ew:由不饱和正交表产生的误差。

上述误差可以归并起来做为试验误差,以减少试验次数,提高试验效率,或增加试验误差的自由度,提高F检验的灵敏度。

局部误差:

取样误差es

由重复取样所产生的误差,它是试验单元内部的误差。

一般

取样误差e。<纯试验误差e<模型误差em

提高F检验灵敏度的途径与方法:

增加误差项的自由度

- (1) 因为 f_e <2时,F值变化很大,因此检验灵敏度较低,容易判断失误
- (2) 当 f_e 值较大时,F值变化逐渐减小,检验可信度提高。

提高误差项自由度的途径与方法:

- (1) 归并各类误差项
- (2) 归并不显著因素及交互作用项

归并原则:

- 1、偏差平方和接近于零的项;
- 2、F 比值小于或等于1的项;
- 3、小于其它偏差平方和1个或几个数量级的项;
- 4、显著性水平 > 0.25 的项。

误差项归并前后显著性变化对结果分析的影响:

- 1、显著性水平不变的因素,应取其优水平;
- 2、显著性不变的交互作用,应取其优搭配;
- 3、显著性变化较大的因素和交互作用,则根据情况,适当选取其水平,或利用贡献率判断。

贡献率:因素或交互作用及试验误差对试验指标总波动所作的贡献大小,用百分比表示:

$$\beta = \frac{S_j - \frac{S_e}{f_e} \times f_j}{S} \times 100\%$$

二、试验水平

衡量指标

1、误差均方差
$$\hat{\sigma}_e = \sqrt{S_e/f_e}$$

$$2、变异系数 C_v = \hat{\sigma}_e / \bar{y}$$

$$C_{v}$$
 $\begin{cases} <5\% & 优良 \\ = 5 \sim 10\% & 一般 \\ > 10\% & 不良 \end{cases}$

本章小结

方差:
$$\sigma^2 = \sum (y_i - \bar{y})^2 / f = \frac{S}{f}$$

总偏差平方 S $S = \sum_{i=1}^a (y_i - \bar{y})^2 = \sum_{i=1}^a y_i^2 - \frac{1}{a} (\sum_{i=1}^a y_i)^2$
总自由度 f $f = a - 1$

列偏差平方和 S_j 及自由度 f_j

$$S_{j} = \frac{a}{b} \sum_{k=1}^{b} (\overline{y}_{jk} - \overline{y})^{2} = \frac{b}{a} \sum_{k=1}^{b} y_{jk}^{2} - \frac{1}{a} (\sum_{i=1}^{a} y_{i})^{2}$$
$$f_{j} = b - 1$$

相互关系
$$S = \sum_{i=1}^{c} S_j = \sum_{C_{\boxtimes}} S_j + \sum_{C_{\nearrow}} S_j + \sum_{C_{\Downarrow}} S_j$$
$$f = \sum_{i=1}^{c} f_j = \sum_{C_{\boxtimes}} f_j + \sum_{C_{\nearrow}} f_j + \sum_{C_{\Downarrow}} f_j$$

$$F$$
检验

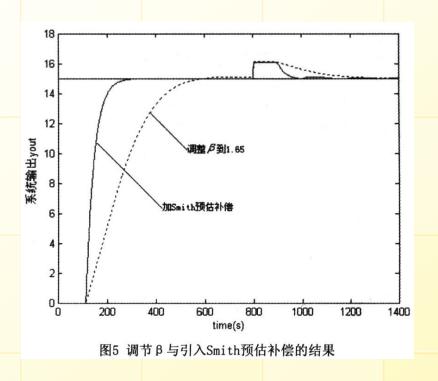
$$F_{\text{EL}} = \frac{S_i/f_i}{S_e/f_e}$$

F临界值

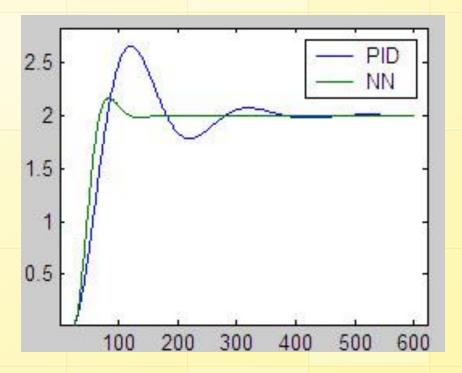
$$F_{\alpha}(f_1, f_2)$$

一般,显著性水平
$$\alpha$$
 置信度 $(1-\alpha)$ α =0.25 75% α = 0.1 90% α = 0.05 95%

方差分析表 计算误差限


第四章 稳健试验设计

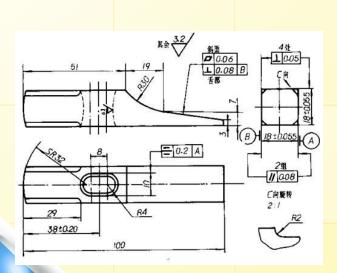
4.1 引言


稳健性(鲁棒性):是对误差因素的不敏感性或对各种干扰的抗性。

稳健设计是使干扰对产品设计、开发、制造和使用的作用效果最小,而质量特性最优。主要内容为系统设计、参数设计和容差设计,核心是参数设计。

稳健性(鲁棒性)

如自行车的平衡 汽车转向时的稳定性 火箭飞行姿态及调整



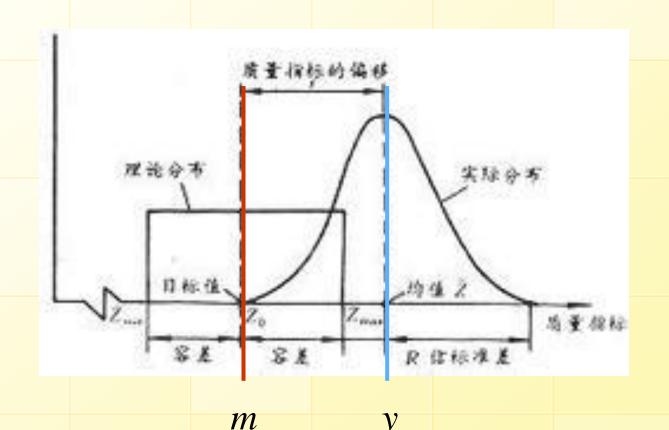
如汽车设计及制造

4.2 基本概念

1、特性值

特性值指表征特性的具体数值,分为计量特性值和计数特性值。

计量特性值:产量、重量、长度、时间、强度、硬度、寿命和误差等。


计数特性值:产品优质品数、次品数、产品销售数等。

特性值在产品设计和质量管理中指产品的性能指标,一般作为试验指标。

产品或系统的质量特性通常统称为目的特性,一般有预定目标或标准中心值,对其有影响的特性称为原因特性。

稳健设计就是要保证目的特性值尽量趋近预 定目标值,并保持稳定。

目的特性,一般有预定目标或标准中心值

4.1.2、质量损失函数

- (1) 质量波动:产品质量特性的波动。
- (2) 质量干扰:产品质量波动的原因,较为复杂:一般分为主观和客观、内部和外部、可控和不可控、规律和随机、已知和未知等。

(3) 质量损失函数

客观质量干扰引起的质量波动会给用户造成损失,可用二次质量损失函数表示:

$$L(y) = k (y - m)^2$$

其中:y为产品性能指标,m为产品性能指标的目标值,k为质量损失系数。

质量损失函数

$$L(y)=k(y-m)^2$$

可见,损失取决于y偏离m的程度,常用平均损失EL(y)表示其大小:

$$EL(y) = E(y-m)^{2}$$

$$= E[y-E(y)]^{2}+[E(y)-m]^{2}$$

$$= \sigma^{2} + \delta^{2}$$

其中: σ²为指标的方差,即指标波动大小;

 $\delta = | E(y) - m | 是指标均值对目标值的绝对$

偏差。

例4-1 电视机的彩色密度

美日两地产索尼电视彩色密度,目标值均为m±5 但两地彩色密度分布不同,见图4-1

A级品

B级品

C级品

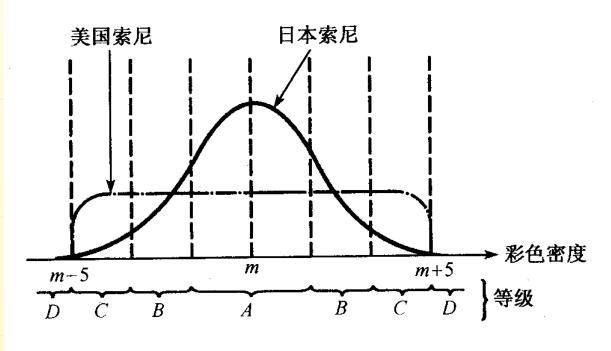


图 4-1 电视机彩色密度分布

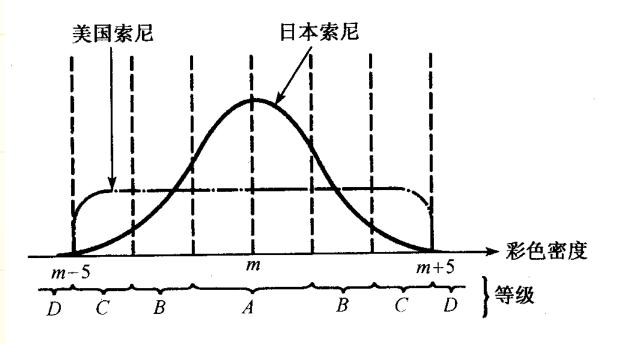


图 4-1 电视机彩色密度分布

可见,虽然同为合格品,日本产A级品数量远高于美国,而C级品则少得多,因此顾客更爱买日本产索尼电视机。

4.2.3 内表因素与外表因素

稳健设计中, 因素分类:

(1) 内表因素

内表因素有控制因素和标示因素

(2) 外表因素

外表因素有信号因素和误差因素。

1、控制因素

控制因素指水平可严格控制因素,如工艺参数、加工参数、结构参数、动力装置、材料种类、机器设备等。

控制因素水平不一定为连续变量,系统或产品类型也可以作为控制因素。

2、标示因素

标示因素指产品生产过程环境和使用条件,水平为客观值,无法任意选择与控制。

- (1) 产品使用条件,如汽车以低、中、高三种速度行驶、彩电色相平衡的暗、一般和明亮;
- (2) 时间,如出现故障时间、使用期限等;
- (3) 品种,不同产品性能对比时其种类,设备与操作人员差别等。

标示因素的作用主要在于调节控制因素水平,寻求其最佳调节和适用范围。如图4-2所示,荧光管寿命与控制因素A(荧光剂,取2个水平), 标示因素B(电压,取3个水平)有关。

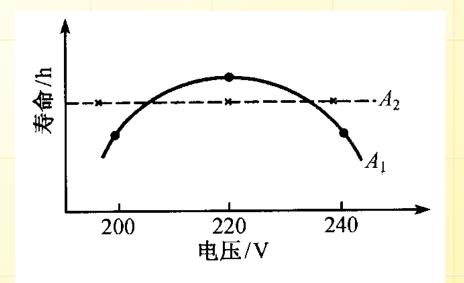


图 4-2 标示因素作用示意

设计时可根据标示 因素水平,选择控制 因素水平。

3、信号因素

信号因素是指通过调节能使目的特性 值尽量接近目标值的因素, 如方向盘转向 角、行驶速度、切削速度、压力、电阻值、 测量值等。分为主动性和被动性两类。信 号因素与目的特性相对应,一般为线性关 系,较易调节。

信号因素与目的特性相对应,一般为线性关系。如稳压电源的电流放大系数、电阻与输出电压的关系

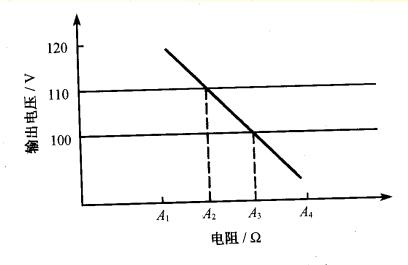


图 4-4 输出电压与电阻 R 的关系

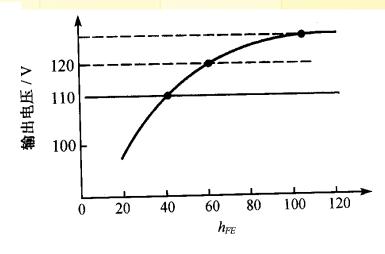


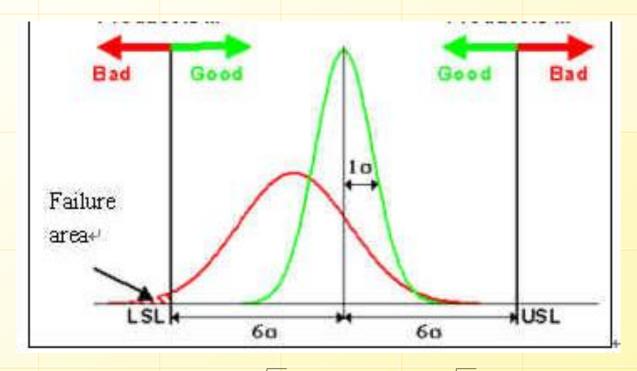
图 4-3 输出电压与电流放大系数 hfe 的关系

4、误差因素

误差因素(噪声因素),分为:

- (1) 外部噪声:环境、使用条件波动干扰
- (2) 内部噪声: 内部劣化、磨损等波动
- (3)产品间噪声:影响产品均一性 通常,应从众多误差因素中,选择主要误差 因素,同时还应给出其水平。

误差因素水平


第一水平 =
$$\mu - \sqrt{\frac{3}{2}}\sigma = \mu - 1.22\sigma$$

第二水平 $=\mu$

第三水平
$$= \mu + \sqrt{\frac{3}{2}}\sigma = \mu + 1.22\sigma$$

其中, μ(m)为误差水平均值, s为误差水平标准差。 μ未知时, 可用误差平方和表示其效应大小。

误差因素水平

$$\mu - \sqrt{\frac{3}{2}}\sigma \quad \mu \quad \mu + \sqrt{\frac{3}{2}}\sigma$$

4.3 SN比试验设计

设产品质量特性为y,期望为 μ ,方差为 σ

SN比指因素主效应与误差效应之比,通常

用变异系数的倒数平方和表示

$$c_{v} = \frac{\sigma}{\mu} = \frac{\hat{\sigma}}{\bar{y}}$$

$$\eta' = \frac{S}{N} = \frac{\mu^2}{\sigma^2} = \frac{\bar{y}^2}{\hat{\sigma}^2}$$

SN比定义及计算

$$\eta' = \frac{S}{N} = \frac{\mu^2}{\sigma^2} = \frac{\bar{y}^2}{\hat{\sigma}^2}$$

其中:

S为(信号)因素主效应;

N为(噪声)误差效应;

y为样本均值,即 μ 的估计值;

 $\hat{\sigma}$ 为样本标准差,即 σ 的估计值。

SN比η值反映了y的散布特性和平均特性,是稳)健设计的综合指标,单位为分贝(dB)。

$$\eta' = \frac{S}{N} = \frac{\mu^2}{\sigma^2} = \frac{\overline{y}^2}{\hat{\sigma}^2} \qquad (dB)$$

实际计算时取其10倍对数值:

$$\eta = 10 \lg \frac{\mu^2}{\sigma^2} \approx 10 \lg \frac{\overline{y}^2}{\hat{\sigma}^2}$$
(dB)

可见,SN比是特性均值平方和误差方差的比值

一般,机械工业,SN比为

$$\eta' = \frac{S}{N} = \frac{\bar{y}^2}{\hat{\sigma}^2} = \frac{\bar{y}^2$$

其突出特点是表示了误差方差对质量特性的相对变化,反应了系统和产品质量特性的稳定程度,因此,提高SN比值,就是提高产品质量。

4.3.2 望目特性的SN比

设质量特性 y_i ($i=1\sim n$)在目标值m上下波动,且越小越好,则y称为望目特性,如尺寸、质量、电阻值等,其SN比为:

$$\eta = 10 \lg \frac{\frac{1}{n} (S_m - V_e)}{V_e}$$
 (dB)

望目特性的SN比反映了信号与噪声之比

望目特性的SN比计算

$$\eta = 10 \lg \frac{\frac{1}{n} (S_m - V_e)}{V_e}$$
 (dB)

望目特性平均值波动 $S_m = n\bar{y}^2$

误差方差 σ^2 的估计值 $V_e = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$

望目特性的平均值

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

望目特性的η可直接由yi计算

$$\eta = 10 \lg \frac{(\sum_{i=1}^{n} y_i)^2 - \sum_{i=1}^{n} y_i^2}{n \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2}$$

该式常用于望目特性的具体计算。

4.3.3 望小特性的SN比

质量特性 y_i (i=1~ \mathbf{n})越小越好,目标值 $\mathbf{m}=0$,非负,则称为望小特性,如振动、测量误差、磨损等等,其SN比为:

$$\eta = \frac{1}{\mu^2 + \sigma^2}$$

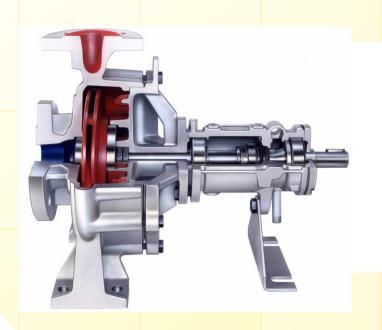
$$\eta = 10 \lg \frac{1}{V_T} = -10 \lg \left| \frac{1}{n} \sum_{i=1}^n y_i^2 \right|$$
(4-9)

其中
$$V_T = \frac{1}{n} \sum_{i=1}^n y_i^2$$

4.3.4 望大特性的SN比

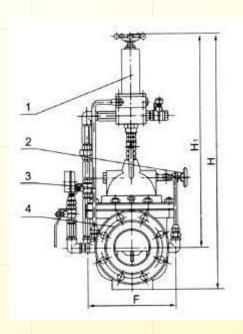
质量特性 y_i (i=1~n)越大越好,非负且波动宜小,则称为望大特性,如零件强度、弹簧寿命等,望大特性为望小特性的倒数,其SN比为:

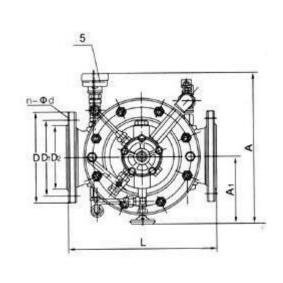
$$\eta = -10 \lg \left| \frac{1}{n} \sum_{i=1}^{n} \frac{1}{y_i^2} \right| (4-10)$$


4.3.5 SN比试验设计

SN比试验设计与一般正交试验设计相比:

- (1) 引入了SN比概念,建立了与产品质量的关系
- (2) 对因素分类更细,更适宜反映对质量的影响
- (3) 因素与指标关系有线性和非线性
- (4) 发展了内正交和外正交排列


本章主要介绍其一般原理与基本方法。


例4-2 水泵阀头滑动部位磨损量SN比试验设计 水泵阀门是系统的主要组成部分,阀头因滑动会产生磨损

阀头是水泵阀门的关键部件,其磨损与阀头 和阀体的材质、工作压力、加工质量等因素有关。

根据专业知识和经验,选定5个2水平因素,同时考虑A×B,A×C交互作用。质量特性为磨损量,越小越好。

表 4-1 试	验因	素表
---------	----	----

A	В	С	D	E
阅头材质	负载	滑动表面粗糙度	润滑油	阀体材质

选用正交表 $L_8(2^7)$ 安排试验,方案如表4-2。

根据使用经验,选定8个不同部位测量磨损量,

结果见下表。

表 4-2 因素配列与试验数据

因素	A	В	$A \times B$	С	$A \times C$	D	E			(y)	磨打	員量/ⅰ	μm		<u>.</u>
试验号	1	2	3	4	5	6	7	y _î	y_2	y_3	<i>y</i> ₄	y_5	y_6	<i>y</i> ₇	<i>y</i> ₈
1	1	1	1	1	1	1	. 1	12	12	10	13	3	3	16	20
2	1	1	1	2	2	2	2	6	10	3	5	3	4	20	18
3	1	2	2	. 1	1	2	2	9	10	5	4	2	1	3	2
4	1	2	2	2	2	1	1	8	8	5	4	3	4	9	9
5	2	1	2	1	2	1	2	16	14	8	8	3	2	20	33
6	2	1	2	2	1	2	1	18	26	4	2	3	3	7	10
7	2	2	1	1	2	2	1	14	22	7	5	3	4	19	21
8	2	2	1	2	1	1_	2	16	13	5	4	11	4	14	30

试验结果计算与分析 (1) 计算SN比

对于磨损量属于望小特性,以第一号处理为例:

$$V_n = \sum_{i=1}^n \frac{y_{ij}^2}{8} = \frac{1231}{8} = 153.857$$
 $\eta_1 = 10 \lg V_n = -21.9$

表 4-3	试验结果分析表
-------	---------

因素	\boldsymbol{A}	В	$A \times B$	\boldsymbol{c}	$A \times C$	D	E	$\sum_{i=1}^{8} v^{2i}$	V_{Ti}	η_i/dB
试验号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	$\sum_{j=1}^{\infty} y_{ij}^2$		
1	i	1	1	1	1	1	1	1231	153. 88	-21.9
2	1	1	1	2	2	2	2	919	114. 86	-20.6
3	1	2	2	1	1	2	2	240	30.00	- 14. 8
4	1	2	2	2	2	1	1	356	44. 50	- 16. 5
5	2	1	2	1	2	1	2	2082	260. 25	-24.2
6	2	1	2	2	1	2	1	1187	148. 38	-21.7
7	2	2	1	1	2	2	1	1581	197. 63	-23.0
8	2	2	1	2	1	1	2	1699	212. 38	-23.3
η_{j1}	-73.8	-88.4	-88.8	-83.9	-81.7	-85.9	-83.1	$\sum_{i=1}^8 \eta_i = -166.$. 00	
η_{j2}	-92. 2	-77.6	-77.2	- 82. 1	-84.3	- 80. 1	- 82. 9	1		- 4.40
$\pmb{\Delta}_j$	18. 4	10. 8	11.6	1. 8	2. 6	5.8	0. 2	$S = \sum_{i=1}^{8} \eta_i^2 - \frac{1}{8}$	$\left(\sum_{i=1}^{n}\eta_{i}\right)^{-1}$	=71 . 18
S_{j}	42. 32	14. 58	16. 82	0. 40	0. 84	4. 21	0.00	$\begin{cases} f = 7 \\ S_e = S_C + S_{A \times C} \end{cases}$	+ S ₋ = 1 24	
F_{j}	102. 39	35. 27	40. 69			10. 19	_	$\begin{cases} S_e = S_C + S_A \times C \\ f_e = 3 \end{cases}$	T 5 E - 1. 27	
$lpha_j$	0. 01	0. 01	0. 01			0. 05		$F_{0.05}(1,3) = 3$	10. 13	

(2) 方差分析

以SN比值作为试验指标,按2水平简化公式计算:

$$S_{j} = \frac{1}{8} (\eta_{j1} - \eta_{j2})^{2} = \frac{1}{8} \Delta_{j}^{2}, j = 1, 2, \dots, 7$$
 $f_{j} = 1$

表 4-3	试验结果分析表
-------	---------

因素	A	В	$A \times B$	С	$A \times C$	D	E	$\sum_{i=1}^{8} v_{i}^{2}$	V_{Ti}	η_i/dB
试验号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	$\sum_{j=1}^{\infty} y_{ij}^2$		
1	i	1	1	1	1	1	1	1231	153. 88	-21.9
2	1	1	1	2	2	2	2	919	114. 86	-20.6
3	1	2	2	1	1	2	2	240	30.00	- 14. 8
4	1	2	2	2	2	1	1	356	44. 50	- 16. 5
5	2	1	2	1	2	1	2	2082	260. 25	-24.2
6	2	1	2	2	1	2	1	1187	148. 38	-21.7
7	2	2	1	1	2	2	1	1581	197.63	-23.0
8	2	2	1	2	1	1	2	1699	212. 38	-23.3
η_{j1}	-73.8	-88.4	-88.8	-83.9	-81.7	-85.9	-83.1	$\sum_{i=1}^{8} \eta_i = -166.$	00	
$oldsymbol{\eta_{j2}}$	-92.2	-77.6	-77.2	-82. 1	-84.3	-80.1	-82.9	$S = \sum_{i=1}^{8} \eta_i^2 - \frac{1}{8}$		71 10
$oldsymbol{\Delta}_j$	18.4	10. 8	11. 6	1.8	2. 6	5.8	0. 2	$S = \sum_{i=1}^{\infty} \eta_i^2 - \frac{1}{8}$	$\left(\sum_{i=1}^{n}\eta_{i}\right)^{-1}$	= /1. 18
S_{j}	42. 32	14. 58	16. 82	0.40	0.84	4. 21	0.00	$\begin{cases} f = 7 \\ S_e = S_C + S_{A \times C} \end{cases}$	$+S_E = 1.24$	
F_{j}	102. 39	35. 27	40. 69		_	10. 19	_	$\int_{e}^{B_{e}-B_{C}+B_{A}\times C} f_{e}=3$.	
$lpha_j$	0. 01	0. 01	0. 01			0. 05		$F_{0.05}(1,3)=10$	0. 13	

(2) 方差分析

以不显著因素及交互作用作为试验误差:

$$S_e = S_4 + S_5 + S_7 = S_c + S_{A \times C} + S_E = 1.24$$

 $f_e = f_4 + f_5 + f_7 = f_c + f_{A \times C} + f_E = 3$

表 4-3 试验结果分析表

因素	\boldsymbol{A}	\boldsymbol{B}	$A \times B$	C	$A \times C$	D	E	$\sum_{v=1}^{8} v^2$	V_{Ti}	η_i/dB
试验号	(1)	(2)	(3)	(4)	(5)	(6)	(7)	$\sum_{j=1}^{\infty} y_{ij}^2$		
1	i	1	1	1	1	1	1	1231	153. 88	-21.9
2	1	1	1	2	2	2	2	919	114. 86	-20.6
3	1	2	2	1	1	2	2	240	30.00	- 14. 8
4	1	2	2	2	2	1	1	356	44. 50	- 16. 5
5	2	1	2	1	2	1	2	2082	260. 25	-24.2
6	2	1	2	2	1	2	1	1187	148. 38	-21.7
7	2	2	1	1	2	2	1	1581	197. 63	-23.0
8	2	2	1	2	1	1	2	1699	212. 38	-23.3
η_{j1}	-73.8	-88.4	-88.8	-83.9	-81.7	-85.9	-83. 1	$\sum_{i=1}^{8} \eta_i = -166.6$	00	
$oldsymbol{\eta_{j2}}$	-92.2	-77.6	-77.2	-82. 1	-84.3	- 80. 1	-82.9	i		-1 10
$\pmb{\Delta}_j$	18. 4	10. 8	11.6	1. 8	2. 6	5.8	0. 2	$S = \sum_{i=1}^{8} \eta_i^2 - \frac{1}{8}$	$\left(\sum_{i=1}^{n}\eta_{i}\right)^{-1}$	=71. 18
S_{j}	42. 32	14. 58	16. 82	0.40	0. 84	4. 21	0.00	$\begin{cases} f = 7 \\ S_e = S_C + S_{A \times C} \end{cases}$	$+S_{\pi}=1.24$	
F_{j}	102. 39	35. 27	40. 69			10. 19	_	$\int_{e}^{B_{e}-B_{C}+B_{A}\times C} f_{e}=3$	E	
α_j	0. 01	0. 01	0. 01			0. 05		$F_{0.05}(1,3) = 10$). 13	<u> </u>

(3) 最优组合

显著因素优水平为 A_1 、 B_2 、 D_2 ,由于 $S_{A\times B}$ >

 S_B , 还需用二元表对 $A \times B$ 进行分析:

$$\eta_{A_1B_2} = \frac{\eta_3 + \eta_4}{2} = -15.65$$

$$\eta_{A_2B_1} = \frac{\eta_5 + \eta_6}{2} = -22.95$$

最优组合 $A_1B_2D_2$

C和E可任选

表 4-3 试验结果分析表

大型	A (1)	B (2)	$A \times B$ (3)	C (4)	$A \times C$ (5)	D (6)	E (7)	$\sum_{j=1}^{8} y_{ij}^2$	V_{Ti}	η_i/dB
$\frac{8}{\eta_{j1}}$	-73.8	-88.4	-88.8	-83.9	-81.7	-85.9	-83. 1	$\sum_{i=1}^{8} \eta_i = -166.6$	00	
η_{j2}	-92. 2	-77.6	-77.2	-82.1	-84.3	- 80. 1		$S = \sum_{i=1}^{8} \eta_i^2 - \frac{1}{8}$	/ 8 \ ²	-
${\it \Delta}_{j}$	18.4	10. 8	11.6	1. 8	2. 6	5.8	0. 2	$S = \sum_{i=1}^{\infty} \eta_i^2 - \frac{1}{8}$	$\left(\sum_{i=1}^{n}\eta_{i}\right)$	=71. 18
S_{j}	42. 32	14. 58	16. 82	0. 40	0. 84	4. 21	0.00	$ \begin{cases} f = 7 \\ S = Sa + Su & a = 3 \end{cases} $	$+S_{E}=1.24$	
F_{j}	102. 39	35. 27	40. 69			10. 19	_	$\begin{cases} f = 7 \\ S_e = S_C + S_{A \times C} \end{cases}$ $f_e = 3$. UE 11.21	
$lpha_j$	0.01	0. 01	0. 01			0.05		$F_{0.05}(1,3) = 10$		<u></u>

(4) 计算增益

$设A_1$ 、 B_1 、 D_1 ,为原组合:

$$\overline{\eta}_{A_1B_2D_2} = (ab)_{12} - \hat{d}_2 - \mu = -15.65 + \frac{-80.1}{4} - \frac{-166}{8} = -14.93 \text{ (dB)}$$

$$\overline{\eta}_{A_1B_1D_1} = (\hat{ab})_{11} - \hat{d}_1 - \mu = -21.98 \text{ (dB)}$$

$A_1B_2D_2$ 组合增益及结论:

$$\Delta L = \overline{\eta}_{A_1 B_2 D_2} - \overline{\eta}_{A_1 B_1 D_1} = -14.93 - (-21.98) = 7.05 \text{ (dB)}$$

(5) 结论及最优组合

因素	阀头材质	负载	润滑油	表面粗糙度	阀体材质
	Α	В	D	С	E
优水平	1	2	2	经验	经验

4.4 稳健设计

稳健设计由系统设计、参数设计和容差设计组成,亦称为三次设计。

稳健设计对于开发高可靠性和稳定性、抗干 扰能力强、优质低成本的产品具有显著作用。

三次设计的基本思想是利用正交设计(直接择优)和SN比设计(稳定性择优)选择最佳的参数组合与最合理的容差范围。

稳健设计原理

在专业设计基础上,利用正交和SN比设计确定最佳的参数组合与最合理的容差范围,选用价格低廉、品级适宜的零部件来组装产品。如机械设计,可以在不用高精度零部件的情况下,改进产品设计质量。

三次设计是上世纪日本产品占据世界市场的法宝之一,值得我们借鉴。

稳健设计组成

(1) 系统设计

系统设计选择确定产品的功能、结构和零部件及其关系。系统设计中,若能建立产品性能指标与主要元器件之间的关系,就能利用试验技术进行优化。

(2)参数设计

参数设计是选择确定产品中各个参数的最佳 水平及其组合的阶段。参数设计基本思路是, 参数水平组合与目的特性间为非线性关系

$$y = [\varphi(x)]^j, j = 2,3\cdots$$

找到一种线性关系

$$y' = f(z) = a + bx$$

通过改变线性因素z, 找出能降低目的特性波动的因素水平组合。

例晶体管稳压电源输入输出

输入值: 220V,输出值: 110V,波动<±2V; 主要影响因素是电流放大系数和调节电阻,改 变其组合,能实现稳定的输出电压。

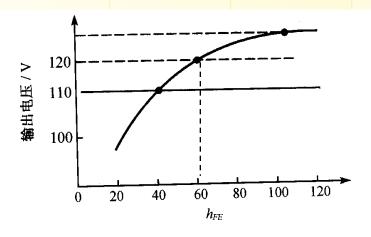


图 4-3 输出电压与电流放大系数 hfe 的关系

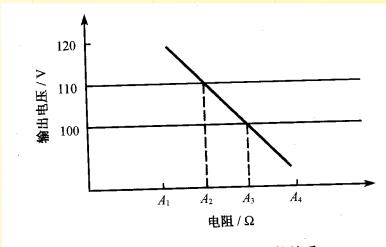
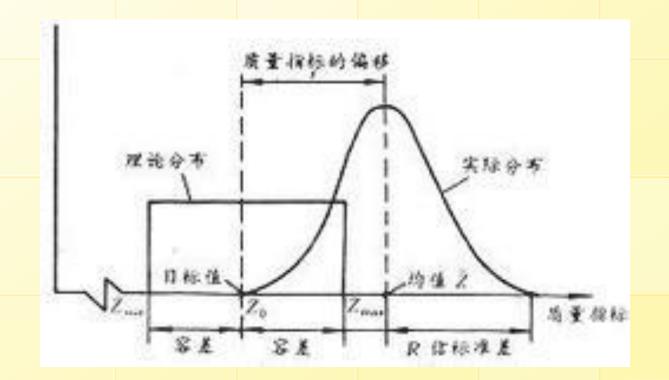



图 4-4 输出电压与电阻 R 的关系

(3) 容差设计

容差设计是在确定主要参数中心值后,对其容差(1/2公差)进行设计。目的在于减小干扰、确定零部件品级。

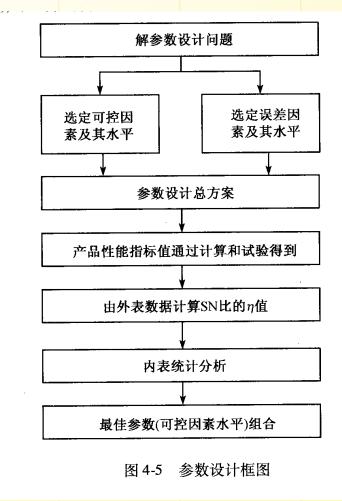
三次设计的关系

系统设计是基础 参数设计是核心 容差设计是完善与提高。

三种设计是相互促进的关系。

本章重点介绍参数设计和容差设计基本方法

4.5 内外表因素相关联参数设计


参数设计通常以正交设计和SN比技术,配置内外两侧正交表进行设计和分析。

内侧正交表(内表)配置控制因素和标示因素;

外侧正交表(外表)配列信号因素和误差因素。

对于内表 L_i 的每一号试验,安排一张外表 L_i' ,并通过试验或计算求出N'个数据。

如果内外表因素有关联,则误差波动主要是控制因素的波动。因此外表可以独立试验,参数设计一般程序为

例4-3 惠斯通电桥测量未知电阻y,调节电阻B,使电流表x=0,元件参数A、C、D、E、F的中心值多少时(品级不变),测量误差(与 $y=2\Omega$)最小?

1) 选择因素水平

以元件参数A、C、D、 E、F为控制因素,水平间 距宜取大,如表所示

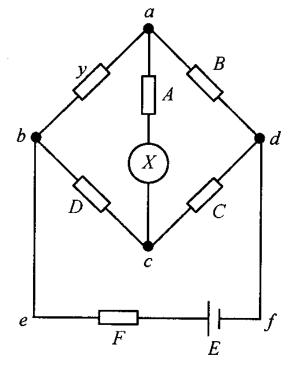


图 4-6 惠斯通电桥

控制因素A、C、D、E、F水平 为考察因素水平影响,水平间距宜取大一些

表 4-4 控制因素水平表

水平 因素	$oldsymbol{b}_1$	b_2	b_3
$A \nearrow \Omega$	20	100	500
$C \nearrow \Omega$	2	10	50
$D ewline \Omega$	2	10	50
· E/V	1.2	6	30
$F earrow \Omega$	2	10	50

以元件波动(品级)作为误差因素,以标示值为中心,选三个水平,如电阻A,20 Ω 时,三个水平分别为19.94 Ω ,20 Ω , 20.06 Ω 。

表 4-5 误差因素水平的误差值

水平 因素	$oldsymbol{b_1}$	b_2	b_3
A' /%	-0.3	0	0.3
B' /%	-0.3	0	0.3
C' /%	-0.3	0	0.3
D' /%	-0.3	0	0.3
E' /%	-5.0	0	5. 0
F' /%	-0.3	0	0.3
X' /%	-0.2	. 0	0. 2

2) 正交表配列与试验

内表采用 L_{36} (3^{13}),将控

制因素A、C、D、E、F排在1、

3、4、5、6列,作为选优表。

外表也采用 L_{36} (3^{13}),用

于考察对应控制因素数值变化

时未知电阻的变化量,即误差

的影响。

表 4-6 控制因素配列与数据

				表	4-6	控制	凶素	配列-	ラ数 携	舌				
试验号	A	e	С	D	E	F	e	e	e	e	e	e	e	数据 η
	1	2	3	4	5	6	7	8	9	10	11	12	13	/dB
1	1	1	1	1	1	1	1	1	1	1	1	1	1	32. 2
2	2	2	2	2	2	2	2	2	2	2	2	2	1	26.7
3	3	3	3	3	3	3	3	3	3	3	3	3	1	15.9
4	1	1	1	1	2	2	2	2	3	3	3	3	1	36. 4
5	2	2	2	2	3	3	3	3	1	1	1	1	1	28.6
6	3	3	3	3	1	1	1	1	2	2	2	2	1	7. 2
7	1 .	1	2	3	1	2	3	3	1	2	2	3	1	16. 5
8	2	2	3	1	2	3	1	1	2	3	3	1	1	13.0
9	3	3	1	2	3	1	2	2	3	1	1	2	1	28. 0
10	1	1	3	2	1	3	2	3	2	1	3	2	· 1	15.0
11	2	2	1	3	2	1	3	1	3	2	1	3	1	16.4
12	3	3	2	1	3	2	1	. 2	1	3	2	1	1	25. 5
13	1	2	3	1	3	2	1	3	3	2	1	2	2	43.8
14	2	3	1	2	1	3	2	1	1	3	2	3	2	-8.3
15	3	1	2	3	2	1	3	2	2	1	3	1	2	14. 6
16	1	2	3	2	1	1	3	2	3	3	2	1	2	29.0
17	2	3	1	3	2	2	1	3	1	1	3	2	2	6. 9
18	3	1	2	1	3	3	2	1	2	2	1	3	2	14. 7
19	1	2	1	3	3	3	1	2	2	1	2	3	2	21.5
20	2	3	2	1	1	1	2	3	3	2	3	1	2	17.4
21	3	1	3	2	2	2	3	1	1	3	1	2	2	14.0
22	1	2	2	3	3	1	2	1	1	3	3	2	2	46. 5
23	2	3	3	1	1	2	3	2	2	1	1	3	2	5. 5
24	3	1	1	2	2	3	1	3	3	2	2	1	2	-8.2
25	1	3	2	1	2	3	3	1	3	1	2	2	3	27. 3
26	2	1	3	2	3	1	1	2	1	2	3	3	3	43. 4
27	3	2	1	3	1	2	2	3	2	3	1	1	3	- 20. 9
28	1	3	2	2	2	1	1	3	2	3	1	3	3	44. 1
29	2	1	3	3	3	2	2	1	3	1	2	1	3	39. 3
30	3	2	1	1	1	3	3	2	1	2	3	2	3	-17.0
31	1	3	3	3	2	3	2	2	1	2	1	1	3	23. 0
32	2	1 .	1	1	3	1	3	3	2	3	2	2	3	44. 2
33	3	2	2	2	1	2	1	1	3	1	3	3	3	-0.9
34	1	3	1	2	3	2	3	1	2	. 2	3	1	3	43. 4
35	2	1	2	3	1	3	1	2	3	3	1	2	3	-7.7
36	3	2	3	1	2	1	2	3	1	1	2	3	3	8.0
2 1														

误差因素水平表

表 4-8	误差因素配列与数据(对应于内表第2号试验)
-------	-----------------------

	A'	<i>B'</i>	<i>C'</i>	D'	E'	F'	Χ'							(1)	(2)
试验号	1	2	3	4	5	6	7	8	9	10	11	12	13	y_i	y_i
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0. 1123	-0.0024
2	2	2	2	2	2	2	2	2	2	2	2	2	1	0.0000	0.0000
3	3	3	3	3	3	3	3	3	3	3	3	3	1	-0. 1023	0.0027

表 4-7 对应于控制因素第 2 号试验的误差因素水平

	第一水平	第二水平	第三水平
A'/Ω	99. 7	100.0	100. 3
B'/Ω	1. 994	2. 0	2.006
C'/Ω	9. 97	10. 0	10. 03
D'/Ω	9, 97	10.0	10. 03
E'/V	5.7	6. 0	6.3
<i>F'</i> /Ω	9. 97	10. 0	10. 03
X'/A	-0.0002	0	0.0002
21 / 11			

外表 误差因素配 列与数据 (1-25)

表中数据为 实测值与目 标值之差

表 4-8 误差因素配列与数据(对应于内表第2号试验)

	A'	<i>B'</i>	C'	D'	E'	F'	X'							(1)	(2)
试验号	1	2	3	4	5	6	7	8	9	10	11	12	13	y_i	y_i
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0. 1123	-0.0024
2	2	2	2	2	2	2	2	2	2	2	2	2	1	0.0000	0.0000
3	3	3	3	3	3	3	3	3	3	3	3	3	1	-0.1023	0.0027
4	1	1	1	1	2	2	2	2	3	3	3	3	1	-0.0060	-0.0060
5	2	2	2	2	3	3	3	3	1	1	1.	1	1	-0.1079	-0.0033
6	3	3	3	3	1	1	1	1	2	2	2	2	1	0. 1252	0.0097
7	1	1	2	3	1	2	3	3	1	2	2	3	1	-0.1188	-0.0036
8	2	2	3	1	2	3	1	1	2	3	3	1	1	0. 1009	-0.0085
9	3	3	1	2	3	1	2	2	3	1	1	2	1	0.0120	0.0120
10	1	1	3	2	1	3	2	3	2	1	3	2	1	-0.0120	-0.0120
11	2	2 .	1	3	2	1	3	1	3	2	1	3	1	-0.1012	0.0086
12	3	3	2	1	3	2	1	2	1	3	2	1	1	0. 1979	0.0033
13	1	2	3	1	3	2	1	3	3	2	1	2	2	0.0950	-0.0087
14	2	3	1	2	1	3	2	1	1	3	2	3	2	0.0120	0.0120
15	3	1	2	3	2	1	3	2	2	1	3	1	2	-0.1132	-0.0035
16	1	2	3	2	1	1	3	2	3	3	2	1	2	-0.1241	-0.0096
17	2	3	1	3	2	2	1	3	1	1	3	2	2	0. 1317	0. 0215
18	3	1	2	1	3	3	2	1	2	2	1	3	2	0.0120	-0.0120
19	1	2	1	3	3	3	1	2	2	1	2	3	2	0. 1201	0. 0153
20	2	3	2	1	1	1	2	3	3	2	3	1	2	0.0000	0.0000
21	3	1	3	2	2	2	3	1	1	3	1	2	2	-0.1250	-0.0154
22	1	2	2	3	3	1	2	1	1	3	3	2	2	0.0060	0.0060
23	2	3	3	1	1	2	3	2	2	1	1	3	2	-0.1247	-0.0096
24	3	1	1	2	2	3	1	3	3	2	2	1	2	0. 1138	0.0035
25	1	3	2	1	2	3	3	1	3	1	2	2	3	-0.1129	-0.0035

误差因素配列与数据(26-36)

															续表
试验号	A'	В'	C'	D'	E'	F'	Χ'						·	(1)	(2)
风驰与	1	2	3	4	5	6	7	8	9	10	11	12	13	$\boldsymbol{y_i}$	y_i
26	2	1	3	2	3	1	1	2	1	2	3	3	3	0. 0951	-0.0087
27	3	2	1	3	1	2	2	3	2	3	1	1	3	0. 0120	0. 0120
28	1	3	2	2	2	1	1.	3	2	3	1	3	3	0. 1186	0.0095
29	2	1	3	3	3	2	2	1	3	1	2	1	3	-0.0060	-0.0060
30	3	2	1	1	1	3	3	2	1	2	3	2	3	-0. 1197	-0.0036
31	1	3	3	3	2	3	2	2	1	2	1	1	3	0.0060	0.0060
32	2	1	1	1	3	1	3	3	2	3	2	2	3	-0. 1133	-0.0093
33	3	2	2	2	1	2	1	1	3	1	3	3	3	0. 1194	0.0036
34	1	3	1	2	3	2	3	1	2	2	3	1	3	-0.0957	0. 0087
35	2	1	2	3	1	3	1	2	3	3	1	2	3	0. 1194	0.0036
36	3	2	3	1	2	1	2	3	1	1	2	3	3	-0.0120	-0.0120

3) SN比方差分析

计算误差数据的波动值,对于第二号外表为

$$S_T = \sum_{i=1}^{N} y_i^2 = 0.3114072$$

$$T = \sum_{i=1}^{N} y_i = 0.0005$$

$$V_T = \frac{S_T}{N} = 0.0086502$$

$$S_e = S_T - \frac{T^2}{N} = 0.3114072$$

$$f_e = N - 1 = 35$$

$$S = \sum_{i=1}^{a} (y_i - \bar{y})^2 = \sum_{i=1}^{a} y_i^2 - \frac{1}{a} (\sum_{i=1}^{a} y_i)^2$$

$$= \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{a} (\sum_{i=1}^{n} y_i)^2$$

外表误差因素SN比项目计算

$$V_e = \frac{S_e}{f_e} = 0.0088973$$

$$S_m = \frac{\sum_{i=1}^{N} y_i'}{N} = \frac{(2 \times 36 + \sum_{i=1}^{N} y_i)^2}{N} = 114.002$$

S_m 为望目特性平均值的波动

$$S_{m} = N\overline{y}^{2} = N(\frac{1}{N}\sum_{i=1}^{N}y_{i})^{2} = \frac{(\sum_{i=1}^{N}y_{i})^{2}}{N} = \frac{(\sum_{i=1}^{N}(2 + \Delta y_{i}))^{2}}{N}$$

内表SN比指标计算

对于第2号试验条件下的SN比为

$$\eta = 10 \lg(\frac{\frac{1}{N}(S_m - V_e)}{V_e}) \approx 10 \lg \frac{S_m}{S_T} = 26.7 \text{ dB}$$

SN比简化计算
$$\eta = 10\lg(\frac{S_m - V_e}{NV_e})$$

= 10 lg(
$$\frac{S_m}{NV_e} - \frac{1}{N}$$
) = 10 lg($\frac{S_m}{N \frac{S_e}{f_e}} - \frac{1}{N}$)

$$=10\lg(\frac{S_{m}}{N(\frac{1}{N-1}(S_{T}-\frac{T^{2}}{N}))}-\frac{1}{N})$$

$$\approx 10 \lg \frac{S_m}{S_T}$$

同理,由外表可计算出各号试验的SN比,作为内表数据

内表的SN比方差分析

$$S = \sum_{i=1}^{N} (\eta_{i} - \overline{\eta})^{2} = \sum_{i=1}^{N} \eta_{i}^{2} - \frac{1}{N} (\sum_{i=1}^{N} \eta_{i})^{2}$$

$$f = N - 1$$

$$S_{\Xi} = \frac{b}{N} \sum_{k=1}^{b} \eta_{k}^{2} - \frac{1}{N} (\sum_{i=1}^{N} \eta_{i})^{2}$$

$$f_{\Xi} = b - 1$$

并且
$$S = \sum S_{\boxtimes} + S_e$$
 $f = \sum f_{\boxtimes} + f_e$

其中, η ,为k水平对应的 η 合计值, $S_{\mathbb{H}}$ 为控制因 素主效应。

例4-3的SN比方差分析表

表 4-9 SN 比方差分析表

方差来源	 波动值 <i>S</i>	自由度 <i>f</i>	方差 V	Fix	α		
A	3696. 277	2	1848. 14	68. 30	0.01		
\boldsymbol{c}	361. 510	2	180. 76	6. 68	0.01		
D	302. 360	2	151. 18	5. 59	0. 01		
E	4454. 630	2	2227. 32	52. 31	0. 01		
F	1901. 660	2	950. 83	35. 41	0. 01		
$oldsymbol{e}$	676. 49	25	27. 06	<u></u>			
S	11392. 93	35	$F_{0.01}(2,25) = 5.57$				

其中,
$$f_e = N - \sum f_{\mathbb{H}}$$

对显著因素各水平对应的η计算平均值

表 4-10	显著因素优水平判断
·	

水平	A	c	D	E	F
1	31. 56	14. 56	20. 91	5. 66	27. 58
2	18. 78	21. 10	21. 24	18.52	19. 68
3	6. 73	21. 42	14. 93	32. 89	9. 81
优水平	A_1	C_3	D_2	E_3	$\boldsymbol{F_1}$

最佳组合为 $A_1C_3D_2E_3F_1$, 即电阻A、C、D、F分别取 20Ω 、 50Ω 、 10Ω 、 2Ω ,电源电压取30V。

如果现行组合为A2C3D2E3F2,所得增益为

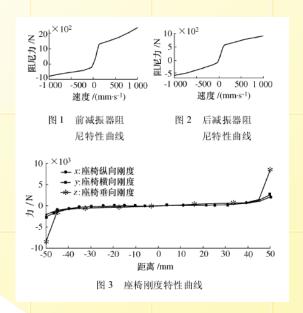
$$\Delta = (\overline{A}_1 - \overline{A}_2) + (\overline{C}_3 - \overline{C}_2) + (\overline{D}_2 - \overline{A}_2) + (\overline{E}_3 - \overline{E}_2) - (\overline{F}_1 - \overline{F}_2)$$

$$= 35.37 \quad (dB)$$

可见,由于采用参数设计,合理选取元件参数组合,元件精度并没有提高,但系统的稳定性却得到了显著提高,即产品的质量得到了明显改善。

如果知道未知电阻y与各元件参量的关系式,则可以通过计算得到试验数据

$$y = \frac{BD}{C} - \frac{X}{C^2 E} [A(D+C) + D(B+C)][B(C+D) + F(B+C)]$$


															续表
试验号	A'	В'	C'	D'	E'	F'	Χ'						·	(1)	(2)
以 型 与	1	2	3	4	5	6	7	8	9	10	11	12	13	y_i	y_i
26	2	1	3	2	3	1	1	2	1	2	3	3	3	0. 0951	-0.0087
27	3	2	1	3	1	2	2	3	2	3	1	1	3	0. 0120	0.0120
28	1	3	2	2	2	1	1 .	3	2	3	1	3	3	0. 1186	0.0095
29	2	1	3	3	3	2	2	1	3	1	2	1	3	-0.0060	-0.0060
30	3	2	1	1	1	3	3	2	1	2	3	2	3	-0. 1197	-0.0036
31	1	3	3	3	2	3	2	2	1	2	1	1	3	0.0060	0.0060
32	2	1	1	1	3	1	3	3	2	3	2	2	3	-0.1133	- 0. 0093
33	3	2	2	2	1	2	1	1	3	1	3	3	3	0. 1194	0.0036
34	1	3	1	2	3	2	3	1	2	2	3	1	3	-0.0957	0. 0087
35	2	1	2	3	1	3	1	2	3	3	1	2	3	0. 1194	0.0036
36	3	2	3	1	2	1	2	3	1	1	2	3	3	-0.0120	-0.0120

例 基于车辆平顺性的稳健优化设计

1 建模

1.1 整车动力学模型的建立

基于 Adams/Car软件平台,参照某轿车车型,对车辆系统进行合理简化。模型由车身,人椅,动力总成,前悬架,后悬架,转向,稳定杆,轮胎等子系统组成,整车模型中的力学参数由企业提供。

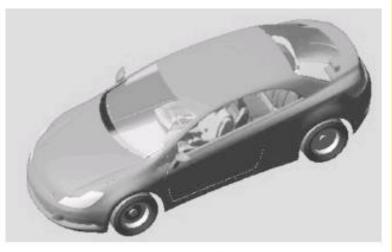


图 4 整车装配图

1.2随机路面模型的建立

选用 A 级和 B 级路面编制成空间频域的路谱文件。A、B 级随机路面的频域模型如图 5和图

6 所示。

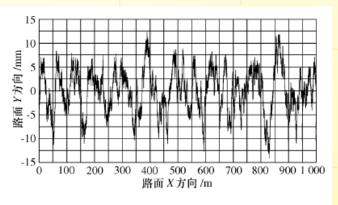
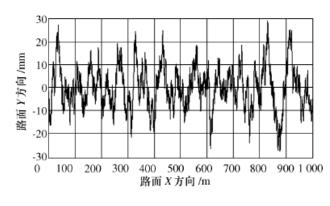
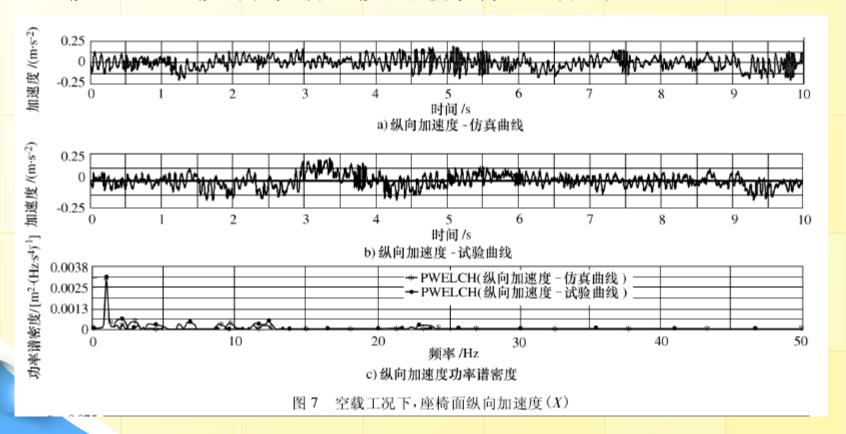
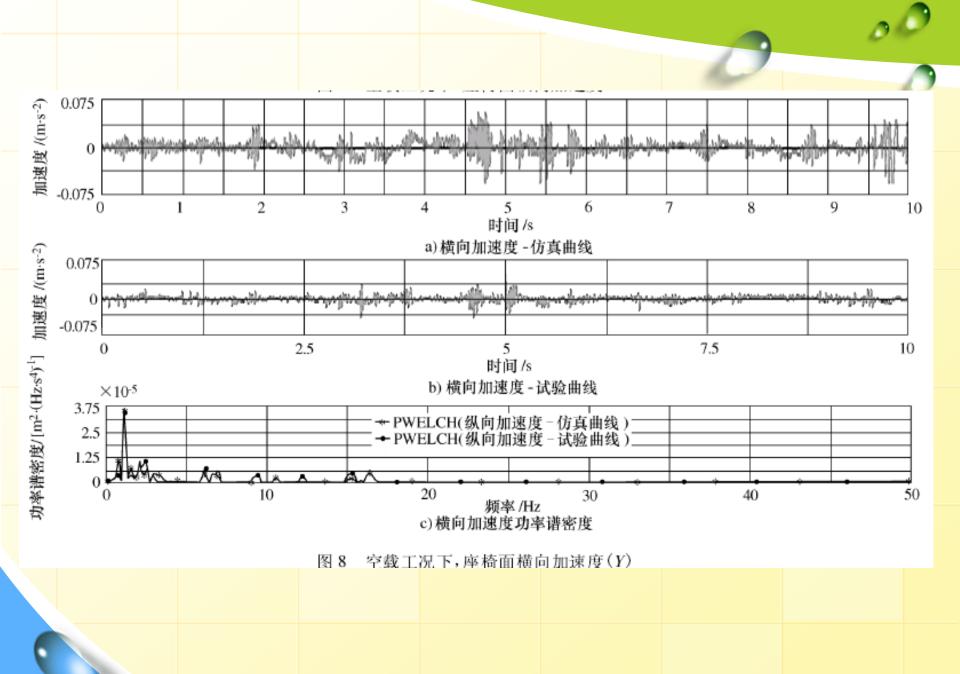
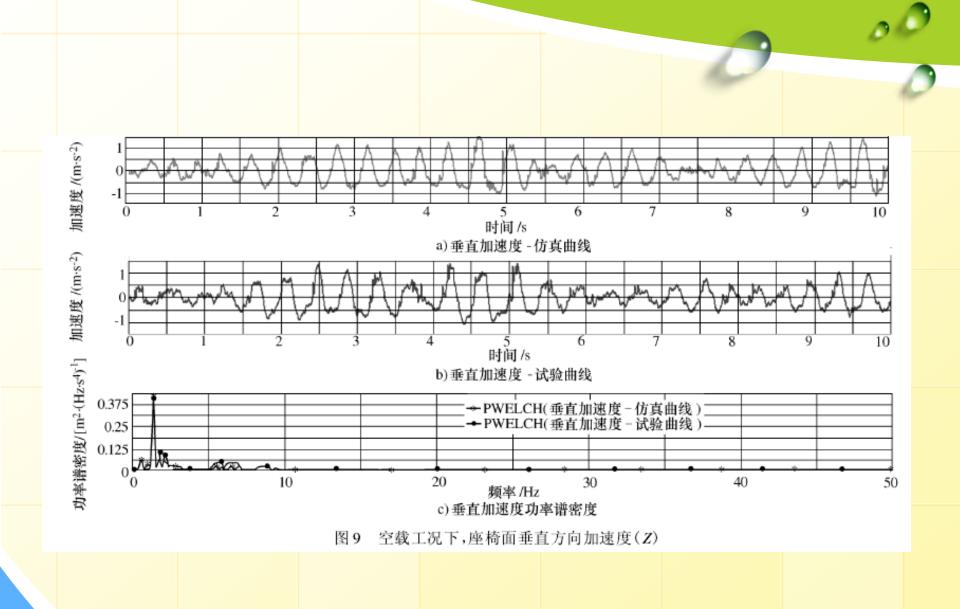


图 5 A 级随机路面的空间谱

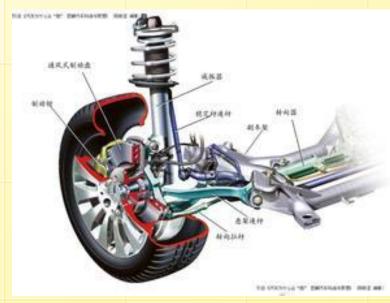




图 6 B 级随机路面的空间谱


1.3 虚拟模型试验验证

采用匀速直线试验对其进行验证。速度为 80 km/h, 沥青路面(相当于 B 级路面) 试验。

试验记录的座椅面纵向加速度,横向加速度,垂直加速度的加速度功率谱密度与仿真值进行对比。



- 2 稳健性的优化设计
- 2.1 可控因素及内表的选择
- 设计变量: 前悬架弹簧刚度 K_f ,前减振器阻尼 C_f ,后前悬架弹簧刚度 K_r ,后减振器阻尼 C_r ,座 椅的刚度 K_z 。每个因素均选择 5 种水平,如表 1 所示。

$$X = (K_f, C_f, K_r, C_r, K_z)$$

表 1 可控因素水平表

水平	K_f	C_f	<i>K</i> ,	C_r	K_z
1	0.8	0.8	0.8	0.8	0. 8
2	0.9	0.9	0. 9	0. 9	0. 9
3	1	1	1	1	1
4	1.1	1.1	1. 1	1. 1	1. 1
5	1.2	1.2	1. 2	1. 2	1. 2

根据因素及相应的水平数,选定 $L_{25}(5^6)$ 正交表为内表。

2. 2 噪声因素及外表的选择

选取载荷(空载:驾驶员一人,满载:坐满)、车速、路面做为噪声因素。噪声因素及水平如表2所示。

外表采用正交实验表 $L_4(2^3)$ 。

表2 噪声因素水平表

水平	载荷	车速	路面
1	空载	80	A 级
2	满载	100	В級

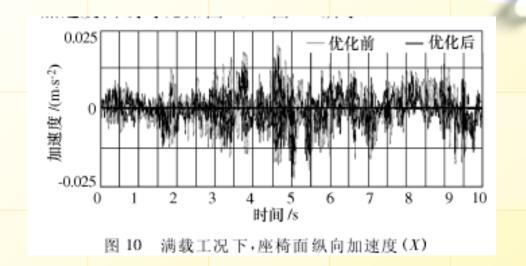
2.3 信噪比的确定

用加权加速度均方根值来评价振动对人体舒适和健康的影响。考虑座椅面x、y、z向总加权加速度为目标函数,目标值越小。

$$\min(\alpha_n)$$
 (1)

$$\alpha_v = [(1.4\alpha_{xw})^2 + (1.4\alpha_{yw})^2 + \alpha_{zw}^2]^{\frac{1}{2}}$$
 (2)

$$R_{SN} = 1/(\mu^2 + \sigma^2)$$
 (3)


$$R_{SN} = -10 \lg (\mu^2 + \sigma^2)$$
 (4)

$$R_{SN} = -10\lg\left(\frac{1}{N}\sum_{i}^{N}y_{i}^{2}\right) \tag{5}$$

2.4 试验结果分析

表 3	试验	设计	- 及信	(聯)	七分析	
454	100 100	EX. 1/1	20% IE	1 28 1	49 23 171	

							农3	瓜 娅 权 月 及 百	7K FG 22 1/1			
		试验	內表	ξ L ₂₅	(5 ⁶)			ù	式验外表 L ₄ (22	1)		_
									噪声因素安排			_
								试验	噪声	_		
试验因素		可控因素安排					1	2	因素	信噪比		
						,	1	1	2	2	车速	R_{SN}
试验							1	2	1	2	载荷	-
次数	K_f	C_f	K_r	C_r	K_z	e	1	2	2	1	路面	_
1	1	1	1	1	1	1	0.153 6	0.3814	0. 423 5	0. 203 4		10.112 3
2	1	2	2	2	2	2	0.135 6	0.3718	0. 396 6	0.1808		10.622 2
3	1	3	3	3	3	3	0.119 5	0.2959	0. 372 0	0. 167 9		11.732 5
4	1	4	4	4	4	4	0.1067	0.262 2	0. 344 9	0. 154 1		12.540 7
5	1	5	5	5	5	5	0.097 9	0.2366	0. 320 0	0. 140 7		13.279 5
6	2	1	2	3	4	5	0.124 1	0.3100	0. 329 5	0. 176 2		12.021 8
7	2	2	3	4	5	1	0.1135	0.273 6	0. 360 0	0. 157 1		12.182 0
8	2	3	4	5	1	2	0.1049	0.243 5	0. 331 8	0. 141 0		13.004 0
9	2	4	5	1	2	3	0.088 7	0.2177	0. 328 7	0.137 0		13.418 1
10	2	5	1	2	3	4	0.120 3	0.2798	0. 336 8	0.1710		12.301 8
11	3	1	3	5	2	4	0.118 1	0.2714	0. 319 5	0.1610		12.683 9
12	3	2	4	1	3	5	0.1024	0.245 7	0. 325 2	0. 145 2		13.060 7
13	3	3	5	2	4	1	0.1029	0.229 6	0.3109	0. 143 7		13.453 1
14	3	4	1	3	5	2	0.124 4	0.3287	0. 314 6	0. 191 3		11.888 6
15	3	5	2	4	1	3	0.1128	0.286 1	0. 294 6	0. 168 7		12.802 0
16	4	1	4	2	5	3	0.096 9	0.233 2	0. 341 9	0. 177 4		12.754 4
17	4	2	5	3	1	4	0.095 4	0.225 6	0. 324 4	0.1640		13.184 6
18	4	3	1	4	2	5	0.118 7	0.3224	0. 293 5	0. 218 1		12.0111
19	4	4	2	5	3	1	0.1126	0.278 0	0. 317 9	0. 204 9		12.346 9
20	4	5	3	1	4	2	0.1100	0.222 9	0. 354 1	0. 190 3		12.530 0
21	5	1	5	4	3	2	0.105 4	0.2108	0. 323 6	0. 182 7		13.150 6
22	5	2	1	5	4	3	0.1122	0.285 8	0. 307 9	0. 206 2		12.373 3
23	5	3	2	1	5	4	0.134 9	0.2814	0. 320 5	0. 196 7		12.238 0
24	5	4	3	2	1	5	0.1044	0.252 1	0. 361 1	0. 183 8		12.243 2
25	5	5	4	3	2	1	0.098 6	0.2344	0.3218	0.1762		13.026 2

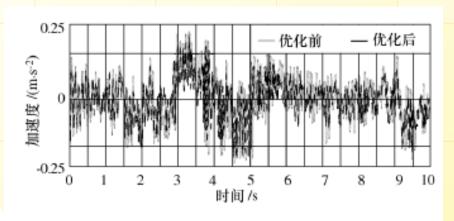


图 11 满载工况下,座椅面横向加速度(Y)

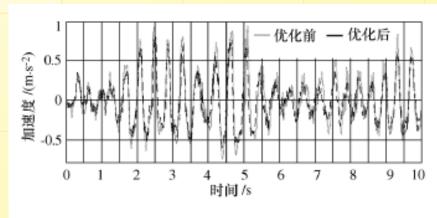


图 12 满载工况下,座椅面垂直方向加速度(Z)

表 4 方差分析

m z		í	各水平平均值	ĭ		- 平方和	白山麻	均方和	F 比	显著性	
因子	1	2	3	4	5	十万和	自由度	均力和	F IL	亚看注	
K_f	11.657 4	12.585 5	12. 777 6	12.565 4	12.606 2	3.929 91	4	0.983 10	62.054 47	显著	
C_f	12.144 6	12.2846	12. 487 7	12.487 6	12, 787 9	1.197 38	4	0.299 97	18.906 99	显著	
K_r	11.737 4	12.0062	12. 274 3	12.877 2	13. 297 2	8.17612	4	2.044 65	129. 103 42	显著	
C_r	12.271 8	12.2748	12. 370 7	12.537 3	12. 739 2	0.98348	4	0.383 46	15.529 44	显著	
K_z	12.269 2	12.3522	12. 518 5	12.587 8	12. 468 5	0.81368	4	0.056 105	12.848 25	显著	
e						0.06333	4	0.024 302			

注:F0.01(4,8) = 7.01

表 5 稳健设计前后性能参数水平值

可控因素	K_f	C_f	K_r	C_r	K_z
稳健设计前水平	3	3	3	3	3
稳健设计后水平	3	5	5	5	4

表 6 稳健设计前后多工况下座椅面总加权加速度

nit als indicate	试验次数											
噪声因素	1	2	3	4								
车速	1	1	2	2								
载荷	1	2	1	2								
路面	1	2	2	1								
稳健设计前	0.1126	0. 253 5	0.3568	0.1540								
稳健设计后	0.09306	0. 215 9	0.3125	0.1402								
变化量	17.3%	14.80%	12.4%	8.9%								

2.5 结论

稳健优化设计后座椅面总加权加速度在<mark>不同的</mark> 工况下都有一定的减小。

现波动范围为 0.0936 ~0.3125

原波动范围为 0.1126 ~ 0.3568

平顺性得到改善,稳健性有一定提高。

4.6 内外表因素无关联参数设计

内外侧因素无关联时,不能单独实施外表试验, 而要将内表和外表联系起来,用<u>直积法进行参数</u> 设计。

例4-4降低合金钢中某种不纯成分的质量设计

1) 选择控制因素及水平,配列内表

按专业经验,选取A、B、C、D、E五个因素,

并考察A×D和D×C的交互作用。

表 4-11 控制因素水平表

水平	A	В	С	D	\boldsymbol{E}
因素	炉料配比	焦比	冶炼时间	风 温	风 量
1	现行方案	现行方案	现行时间	现行规定	现行规定
2	新方案	新方案	新定时间	新 规 定	新规定

选择 L_8 (2^7),进行表头设计,考察 $A \times D$ 和 $D \times C$ 的交互作用,配列内表

表 4-12 内表设计

因素	D	A	$A \times D$	C	$D \times C$	E	В
试验号	1	2	3	4	5	6	7
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2

2) 选外侧因素及其水平,配列外表

为维持线性变化,一般因素水平取等间隔。按专业经验,以添加剂,如废钢等作为信号因素M,并取三个水平(其中x为添加剂量,未知,每次等间隔加5个单位量)

$$M_1 = x$$
, $M_2 = x + h$, $M_3 = x + 2h$

以不纯成分K、L和环境条件R(试验天数)作为误差因素,分别取三个水平

外表设计采用L₉(3⁴)

表 4-13 外表设计

因素	R	M	K	L
试验号	1	2	3	4
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

信号因素:添加剂M;

误差因素:不纯成分K、L和环境条件R(试验天数)

3) 直积设计

表 4-14 直积设计与试验数据

									试验号 因素	1	2	3	4	5	6	7	8	9
									R (1)	R_1	R_1	R_1	R_2	R_2	R_2	R_3	R_3	R_3
	因素	D	A	A	C	D	E	В	K(3)	K_1	K_2	K_3	K_2	K_3	K_1	K_3	K_1	K_2
\	\			X D		× C			L (4)	L_1	L_2	L_3	L_3	L_1	L_2	L_2	L_3	L_1
试验	号	1	2	3	4	5	6	7	M(2)	M_1	M_2	M_3	M_1	M_2	M_3	M_1	M_2	M_3
	1	1	1	1	1	1	1	1		0.7	1.4	1.5	0. 4	1.3	1. 9	0. 9	1. 4	1.7
	2	1	1	1	2	2	2	2		1.5	2.6	3.7	1.4	2. 5	3.6	1.4	2. 5	3.6
	3	1	2	2	1	1	2	2		0.9	1.7	2. 8	0.4	1.9	3.0	0.7	1.8	2. 9
	4	1	2	2	2	2	1	1		0.8	1.8	2.8	0.7	1.8	3.0	0.8	1.8	2.9
	5	2	1	2	1	2	1	2		1.1	2.4	3. 1	0.6	1.9	2. 2	0.9	2. 2	2. 8
	6	2	1	2	2	1	2	1		1.2	2. 4	3.6	1. 2	2.6	3.7	1. 2	2. 2	3.7
:	7	2	2	1	1	2	2	1		0. 8	1.5	2. 0	0. 9	1.6	2. 4	0.8	1.5	2.3
	8	2	2	1	2	1	1	2		0. 9	2. 0	3. 0	1. 2	2. 0	3. 1	1.0	2. 0	3. 1

4) SN比方差分析

表 4-14 直积设计与试验数据

								试验号	1	2	3	4	5	6	7	8	9	信
								R (1)	R_1	R_1	R_1	R_2	R_2	R_2	R_3	R_3	R_3	噪
因素	D	A	A	C	D	E	В	K (3)	K_1	K_2	K_3	K_2	K_3	K_1	K_3	K_1	K_2	比
			× D		× C			L (4)	L_1	L_2	L_3	L_3	L_1	L_2	L_2	L_3	L_1	η /dB
试验号	1	2	3	4	5	6	7	M(2)	M_1	M_2	M_3	M_1	M_2	M_3	M_1	M_2	M_3	
1	1	1	1	1	1	1	1		0.7	1.4	1.5	0. 4	1.3	1.9	0. 9	1.4	1. 7	-5.8
2	1	1	1	2	2	2	2		1.5	2.6	3.7	1.4	2. 5	3.6	1.4	2. 5	3.6	12. 3
3	1	2	2	1	1	2	2		0.9	1.7	2.8	0.4	1.9	3.0	0.7	1.8	2. 9	3.2
4	1	2	2	2	2	1	1		0.8	1.8	2.8	0.7	1.8	3.0	0.8	1.8	2. 9	10. 4
5	2	1	2	1	2	1	2		1.1	2.4	3. 1	0.6	1.9	2. 2	0. 9	2. 2	2. 8	-6.3
6	2	1	2	2	1	2	1		1.2	2. 4	3.6	1. 2	2.6	3.7	1. 2	2. 2	3. 7	10. 9
7	2	2	1	1	2	2	1		0.8	1.5	2. 0	0. 9	1.6	2. 4	0.8	1.5	2. 3	1.4
8	2	2	1	2	1	1	2		0. 9	2. 0	3. 0	1. 2	2.0	3. 1	1.0	2. 0	3. 1	7. 0

方差分析和显著因素优水平判断

表 4-15 方差分析表

方差来源	f	S	V	F	α
A	1	14. 85	14. 85	30. 34	0.05
В	1	0.06	. 	_	_
$\boldsymbol{\mathcal{C}}$	1	289. 20	289. 20	396. 16	0. 01
D	1	6. 3	6. 3	8. 63	
$A \times D$	1	1.36	_	_	
$C \times D$	1	0.78		<u> </u>	_
E	1	63. 28	63. 28	86.06	0.01
e	0	0.00		-	
(e)	(3)	(2.20)	(0.73)	_	
T	7	375. 83	_		

表 4-16 显著因素优水平判断

因素 水平	A	С	E
1	2, 775	-1.875	1. 325
2	5. 500	10. 150	6.950
优水平	A_2	C_2	E_2

最佳组合为 $A_2B_2C_2D_1E_2$,与现行组合 $A_1B_1C_1D_1E_1$ 比,显著因素所得增益为

$$\Delta = (\overline{A}_2 - \overline{A}_1) + (\overline{C}_2 - \overline{C}_1) + (\overline{E}_2 - \overline{E}_1)$$

$$= 20.375 \quad (dB)$$

可见,通过内外表因素无关联参数设计,降低了不纯成分对产品质量的影响,即提高了产品质量的稳定性。

4.7 综合误差因素参数设计

内外表配列的参数设计存在试验次数过多问题,解决方法有二水平正交法、多面体设计和对称坐标法、综合误差因素法等。

综合误差因素N由若干个误差综合而成,通常 取两个水平:

N1: 负侧最坏水平;

N2: 正侧最坏水平;

综合误差因素参数设计

误差综合两个水平:

N1: 负侧最坏水平,使指标y达到最小值的各个误 差因素水平的组合;

N2: 正侧最坏水平, 使指标y达到最大值的各个误差因素水平的组合;

若取第三水平N3,则第二水平综合成中间水平。

设有 $n=p^k$ 误差因素试验 得n个试验结果 y_i (i=1,2,...n)。

若将k个p水平误差因素看成一个具有n个水平的因素,而把试验结果从小到大排序

$$y_{(1)} \le y_{(2)} \le y_{(n-1)} \le y_{(n)}$$

那么 N_1 和 N_2 分别对应其最小值 $y_{(1)}$ 和最大值 $y_{(n)}$

则 其和 $y_{(1)}$ + $y_{(n)}$ 含有总体均值 μ 的信息

其差 $y_{(n)}$ - $y_{(1)}$ 含有方差 σ^2 的信息。

则有

$$\hat{\mu} = \frac{1}{2} (y_{(1)} + y_{(n)})$$

$$\hat{\sigma}^2 = \frac{1}{2} (y_{(n)} - y_{(1)})^2$$

综合误差情况下的SN比的η为

$$\eta' = 10 \lg \frac{2y_{(1)}y_{(n)}}{(y_{(n)} - y_{(1)})^2}$$

综合误差因素参数设计条件

- (1) 所选误差因素均为主要误差因素;
- (2) 所选误差因素对y影响方向已知(增或减函数)

若仅部分误差因素满足上述条件,可对其进行综合,其他误差因素则需要重新设计外表试验。

例4-5 电感电路的综合误差参数设计

电感电路,输出电流强度y为

$$y = \frac{V}{\sqrt{R^2 + (2\pi f L)^2}}$$

表 4-17 因素水平表

B	水平	1	2	3
	R/Ω	0.5	5. 0	9. 5
控制因素	<i>L /</i> H	0. 01	0. 02	0. 03
误差因素	R'/Ω	内表值×0.9	内表值	内表值×1.1
产品间误差	<i>L'</i> /H	内表值×0.9	内表值	内表值×1.1
		90	100	110
外部误差	f/Hz	50	55	60

由电流强度y计算公式

$$y = \frac{V}{\sqrt{R^2 + (2\pi f L)^2}}$$

负侧最坏水平

$$N_1 = R_3' L_3' V_1 f_3$$

正侧最坏水平

$$N_2 = R_1' L_1' V_3 f_1$$

	表 4-17 因素水平表							
水平因素	1	2	3					
R/Q	0. 5	5. 0	9. 5					
L/H	0. 01	0.02	0. 03					
R' /Ω	内表值×0.9	内表值	内表值×1.1					
L' /H	内表值×0.9	内表值	内表值×1.1					
<i>V /</i> V	90	100	110					
f /Hz	50	55	60					

若内表选用L₉(3⁴),外表用此综合,则总试验次数为18次。而采用直积法,则为81次,可见试验次数大大减少。

由电流强度y,对内表第1号试验计算得

$$y_{11} = \frac{90}{\sqrt{0.55^2 + (2\pi \times 60 \times 0.011)^2}} = 21.5$$
 (A)

$$y_{12} = \frac{110}{\sqrt{0.45^2 + (2\pi \times 50 \times 0.009)^2}} = 38.4$$
 (A)

SN比为

$$\eta' = 10 \lg \frac{2y_{(1)}y_{(n)}}{(y_{(n)} - y_{(1)})^2}$$

$$= 10 \lg \frac{2 \times 21.5 \times 38.4}{(38.4 - 21.5)^2} = 7.6 \quad (dB)$$

试验结果

最佳组合

 R_3L_1 , 恰

好为第七

号试验组

合

表 4-18 综合误差因素参数设计结果分析

\setminus_i	R	L	e	e	N_1	N_2	*
i	1	2	3	4	y_{i1}	y_{i2}	η^*
1	1	1	1	1	21.5	38. 4	7.6
2	1	2	2	2	10. 8	19.4	7.5
3	1	3	3	3	7. 2	12. 9	7. 6
4	2	1	2	3	13. 1	20. 7	9. 7
5	2	2	3	1	9.0	15. 2	8.5
6	2	3	1	2	6. 6	11.5	8.0
7	3	1	3	2	8. 0	12. 2	10. 4
8	3	2	1	3	6. 7	10. 7	9. 5
9	3	3	2	1	5. 5	9. 1	8. 9
${\boldsymbol{\eta}_{j1}^{\;*}}$	22.7	27.7	25. 1	25. 0			$\sum_{i=1}^{9} \eta_{i}^{*} = 77.7$
$\eta_{j2}^{\;*}$	26. 2	25. 5	26. 1	25.9			$\left(\sum_{i=1}^{9} \eta_i^* \right)^2 = 670.81$
$\eta_{j3}^{\ *}$	28.8	24. 5	26. 5	26. 8			$\frac{\left(\sum_{i=1}^{n} \eta_{i}\right)}{9} = 670.81$
S_j	6. 25	1. 79	0. 35	0. 53			S = 8. 92

表 4-19 SN 比的 η^* 的方差分析

方差来源	偏差平方和 S	自由度 ƒ	均方和 S/f	$F_{\mathfrak{t}}$	显著性
R	6. 25	2	3. 125	14. 20	* $(\alpha = 0.05)$
L	1.79	2	0. 895	4. 07	
e	0. 88	4	0. 220		

注: $F_{0.05}(2,4) = 6.94$; $F_{0.01}(2,4) = 18.00$ 。

4.8 质量特性灵敏度分析

4.8.1 灵敏度

灵敏度指产品质量特性接近目标值的程度, 反应了质量平均特性,是产品质量的另一个重要 评价指标。望目特性下,灵敏度 $S = \mu^2$

设有 y_i (i = 1, 2, ...n),则

$$S = 10\lg \frac{1}{n}(S_m - V_e) \quad (dB)$$

称为望目特性y的灵敏度。

在实际计算时,为了直观、简便,也用指标平均

值作为灵敏度进行分析

$$S = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 具有较好的正态分布

动态特性下,灵敏度 $S = \beta^2$

β为信号因素变化一个单位时,目的特性的相应 变化量。

设有 y_i (i = 1, 2, ...n),则

$$S = 10\lg \frac{1}{r} (S_{\beta} - V_e) \quad (dB)$$

r为信号水平的重复次数

 S_{β} 为信号因素的一次效应

$$\frac{1}{r}(S_{\beta}-V_{e})$$
 为 β^{2} 的无偏估计值

4.8.2 灵敏度分析步骤

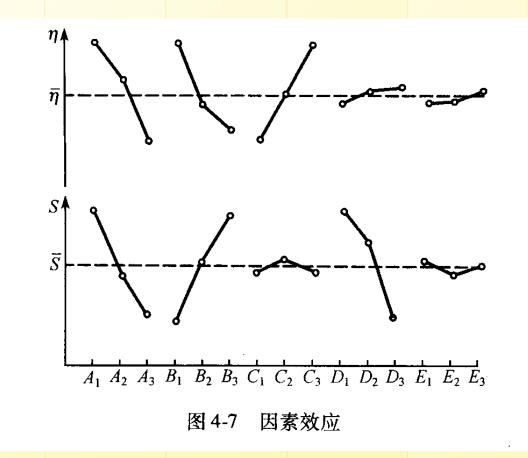
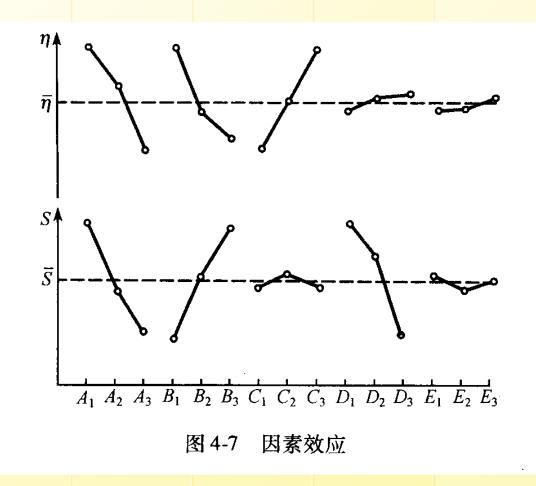

计算灵敏度S,对控制因素分类,选出调节 因素,即对SN比影响小,而对灵敏度影响大的 控制因素。

表 4-20 控制因素分类


类 别	SN 比分析	灵敏度分析	因素名称
1	*	*	重要因素
2	*		稳健因素
3		*	调节因素
4			次要因素

注:*表示显著性。

设实施的3⁵试验,对五个因素分别进行SN比和灵敏度分析,效应如图。一般,S宜大,则重要因素A为互补因素,B为互斥因素,C为稳健因素,D为调节因素,E为次要因素。

改变调节因素或互补因素水平,使指标均值接近目标值,若相互矛盾,改变稳健因素提高SN比,直至达到要求,否则需进行第二轮试验。

例4-6 电感电路输出特性灵敏度分析

表 4-21 💆 的统计分析

			双 4-4	ar a har	C 1 22 41
<u></u>	R	L	e	e	\bar{y}_i
1 1	1	2	3	4	<i>y</i> _i
1	1	1	1	1	14. 61
2	1	2	2	2	9. 75
3	1	3	3	3	7. 32
4	2	1	2	3	11.77
5	2	2	3	1	8.75
6	2	3	1	2	6. 86
7	3	1	3	2	8. 53
8	3	2	1	3	7. 13
9	3	3	2	1	5. 99
\bar{y}_{j1}	31. 68	34. 91	28. 60	29. 35	$\sum_{i=1}^{9} \overline{y}_i = 80.71$
$ar{y}_{j2}$	27. 38	25. 63	27. 51	25. 14	$\left(\sum_{i=1}^{9} \overline{y_i}\right)^2 / 9 = 723.79$
$\bar{y}_{ar{eta}}$	21. 65	20. 17	24. 60	26. 22	S = 59.94 $f = 8$
S_{j}	16. 88	37. 02	2. 85	3. 19	
\pmb{F}_j	5. 59	12. 26			$F_{0.1}(2,4) = 4.32$
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0. 10	0.01			$F_{0.05}(2,4) = 6.94, F_{0.01}(2,4) = 18.0$

表 4-22 控制因素类别

指标类别	SN比	灵敏度	因 素
1			无(重要因素)
2	* *		R(稳健因素)
3		*	L(调节因素)
4			无(次要因素)

电感电路输出特性灵敏度分析

	ي ا	(,)			
\bar{y}_{j1}	31. 68	34. 91	28. 60	29. 35	$\sum_{i=1}^{9} \overline{y}_i = 80.71$
<i>y</i> ,2	27. 38	25. 63	27. 51	25. 14	$\left(\sum_{i=1}^{9} \bar{y}_{i}\right)^{2} / 9 = 723.79$
\bar{y}_{j3}	21. 65	20. 17	24. 60	26. 22	S = 59.94 $f = 8$
S_{j}	16. 88	37. 02	2.85	3. 19	
F_{j}	5. 59	12. 26			$F_{0.1}(2,4) = 4.32$
α_j	0. 10	0. 01			$F_{0.05}(2,4) = 6.94, F_{0.01}(2,4) = 18.0$

由表可见,减小电感L可增加输出电流y若将 L_2 =0.02 $H\to L_1$ =0.01H, $y\uparrow$,但SN比稍有降低对最佳组合 R_3L_1 (R=9.5 Ω ,L=0.01H)

$$y = 9.93, \hat{\sigma}^2 = 1.26, \eta' = 18.95$$

y接近其目标值m=10A,而SN比也较高。

4.9 容差设计

容差设计通过选择元件精度,减少质量特性波动。容差设计一般通过计算质量损失函数L,对不同容差设计方案进行比较:

$$L = k\sigma^{2} = \frac{A_{0}}{\Delta_{0}^{2}} (y - m)^{2}$$

 σ^2 为误差方差; A_0 为质量波动为 \triangle_0 时给用户带来的损失; \triangle_0 为用户要求的容差;y为质量特性观测值;m为质量特性目标值。

例4-7 惠斯通电桥容差设计

- (1) 根据最佳组合A₁C₃D₂E₃F₁, 先选三级品元件;
- (2) 选误差因素,配误差因素表。

表 4-23 误差因素水平表

因素 水平	Α /Ω	Β/Ω	C/\O	D/Ω	E/V	F/Ω	X/mA
1	19. 94	1. 994	49. 85	9. 97	29.5	1. 994	-0.2
2	20	2.00	50	10.0	30	2. 0	0
3	20.06	2.006	50. 15	10. 03	31.5	2. 006	0. 2

表中数据 为测量误 差

			表	4-8	误差	因素	配列与	数据	(对)	並于 🌣	内表第	第2号	试验)	
	A'	<i>B'</i>	<i>C'</i>	D'	E'	F'	Χ'							(1)	(2)
试验号	1	2	3	4	5	6	7	8	9	10	11	12	13	y_i	y_i
1	1	1	1	1	1	1	1	1	1	1	1	1	1	0. 1123	-0.0024
2	2	2	2	2	2	2	2	2	2	2	2	2	1	0.0000	0.0000
3	3	3	3	3	3	3	3	3	3	3	3	3	1	-0. 1023	0.0027
4	1	1	1	1	2	2	2	2	3	3	3	3	1	-0.0060	-0.0060
5	2	2	2	2	3	3	3	3	1	1	1.	1	1	-0.1079	-0.0033
6	3	3	3	3	1	1	1	1	2	2	2	2	1	0. 1252	0.0097
7	1	1	2	3	1	2	3	3	1	2	2	3	1	-0.1188	-0.0036
8	2	2	3	1	2	3	1	1	2	3	3	1	ĺ	0. 1009	-0.0085
9	3	3	1	2	3	1	2	2	3	1	1	2	1	0.0120	0.0120
10	1	1	3	2	1	3	2	3	2	1	3	2	1	-0.0120	-0.0120
11	2	2	1	3	2	1	3	1	3	2	1	3	1	-0.1012	0.0086
12	3	3	2	1	3	2	1	2	1	3	2	1	1	0. 1979	0.0033
13	1	2	3	1	3	2	1	3	3	2	1	2	2	0.0950	-0.0087
14	2	3	1	2	1	3	2	1	1	3	2	3	2	0.0120	0.0120
15	3	1	2	3	2	1	3	2	2	1	3	1	2	-0.1132	-0.0035
16	1	2	3	2	1	1	3	2	3	3	2	1	2	-0.1241	-0.0096
17	2	3	1	3	2	2	1	3	1	1	3	2	2	0. 1317	0. 0215
18	3	1	2	1	3	3	2	1	2	2	1	3	2	0.0120	-0.0120
19	1	2	1	3	3	3	1	2	2	1	2	3	2	0. 1201	0. 0153
20	2	3	2	1	1	1	2	3	3	2	3	1	2	0.0000	0.0000

-0.1250

0.0060

-0.1247

0.1138

-0.1129 -0.0035

-0.0154

0.0060

-0.0096

0.0035

(3) 方差分析

$$S_m = \frac{(\sum_{i=1}^n y_i)^2}{N} = \frac{4(4 \times 10^{-4})^2}{36} \approx 0$$

$$f_m = 1$$

第j因素一次和二次效应波动计算

$$S_{jl} = \frac{\left[\sum_{k=1}^{b} W_{jk} Y_{k}\right]^{2}}{r \lambda_{l}^{2} S_{l}}$$

$$S_{jq} = \frac{\left[\sum_{k=1}^{b} W_{jk} Y_{k}\right]^{2}}{r \lambda_{q}^{2} S_{q}}$$

若b=3, 计算公式简化为

$$S_{jl} = \frac{(-Y_1 + Y_2)^2}{2r}$$

$$S_{jq} = \frac{(Y_1 - 2Y_2 + Y_3)^2}{6r}$$

总效应波动计算

$$S_T = \sum_{i=1}^{N} y_i^2 = 0.002896, f = N = 36$$

$$V_T = \frac{S_T}{N} = 0.00008045$$

$$S_e = S_T - S_m - \sum_{ij} S_{ji} - \sum_{ij} S_{jq}, f_e = 21$$

容差设计的方差

表 4-24 容许差设计的方差分析表

	•		
方差来源	自由度ƒ	平方和 8	均方 V
\overline{m}	1	0	0
A_{l}	1	1	1
A_q	1	0	0
$B_l^{'}$	1	86 482	86 482
B_q	1	1	1
$C_l^{'}$	1	87 102	87 102
C_q	1	0	0
$D_{l}^{'}$	1	87 159	87 159
D_q	1	0	0
$E_l^{^{\tau}}$	1	0	0
$oldsymbol{E_q}$. 1	0	0
$\overrightarrow{F_l}$	1	0	0
$oldsymbol{F_q}$	1	1	1
X_{l}^{q}	1	28 836	28 836
X_q	1	0	0
e^{q}	21	41	1. 95
S	36	289 623	

容差设计的方差分析

表 4-25 方差分析表

方差来源	自由度ƒ	平方和 S	均方 V	贡献率 β/%
B_l	. 1	86 482	86 482	29. 860
C_l	1	87 102	87 102	30. 074
D_l	1	87 159	87 159	30. 093
X_{l}	1	28 836	28 836	9. 956
e	32	44	1. 38	0. 017
S	36	289 623	8045. 1	100.000

$$\beta = \frac{S_j - f_j S_e / f_e}{S} \times 100\%$$

(4) 容差设计

表 4-26 各方案参数中心值及误差方差

中心值因素	(1) 初始中心值	(2) 最佳中心值	(3) 最佳中心值	(4) 最佳中心值
A/Ω	100 ± 0. 3%	20 ± 0. 3%	20 ± 0. 3%	$20 \pm 0.3\%$
B/Ω	2 ± 0. 3%	$2 \pm 0.3\%$	$2 \pm 0.03\%$	$2 \pm 0.03\%$
C/Ω	$10 \pm 0.3\%$	$50 \pm 0.3\%$	$50 \pm 0.03\%$	$50 \pm 0.03\%$
D/Ω	10 ± 0. 3%	$10 \pm 0.3\%$	$10 \pm 0.03\%$	$10 \pm 0.03\%$
E/V	6 ± 5%	$30 \pm 5\%$	$30 \pm 5\%$	$30 \pm 5\%$
F/Ω	10 ± 0. 3%	$2 \pm 0.3\%$	$2 \pm 0.3\%$	$2 \pm 0.3\%$
X/mA	0 ± 0.2	0 ± 0.2	0 ± 0.2	0 ± 0.04
误差方差	0.008 650 20	0. 000 080 45	0. 000 008 75	0.000 001 06
质量损失/日元	10. 3802	0. 0965	0. 0105	0.0013
成本费用/日元	基准	+0	+0.0050	+0.0883
合计/日元	10. 3802	0. 0965	0. 0155	0. 0896
年计/万日元	124. 56	1. 16	0. 19	1.08

4.10 动态特性设计

动态特性是指产品质量特性随输入信号变化时, 波动小且保持稳定的特性,如汽车转向、刹车等。 动态特性SN比

$$\eta = \frac{\beta^2}{\sigma^2}$$

其中,β²为信号因素变化一个单位时,目的特性的相应变化量;为误差方差。

动态特性与信号因素M间关系

$$y = \beta M + \varepsilon$$

$$\eta = 10 \lg \frac{1}{r} (S_{\beta} - V_{e}) / V_{e}$$

$$V_{e} = S - S_{\beta}$$

$$r = n \sum_{k=1}^{K} M_k^2$$

$$S_{\beta} = \frac{1}{r} \left(\sum_{k=1}^{K} y_k M_k \right)^2$$

$$V_e = S - S_{\beta}$$

当y与M为多项式关系时

$$\eta = 10 \lg \left[\frac{1}{rsh^2} (S_{\beta} - V_e) / V_e \right]$$

当信号因素M水平取等间隔时

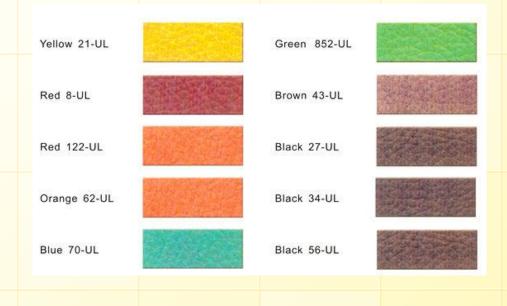
$$S_{\beta} = \frac{\left(\sum_{k=1}^{K} W_{k} y_{k}\right)^{2}}{r \lambda^{2} S} - \frac{V_{e}}{V_{e}}$$

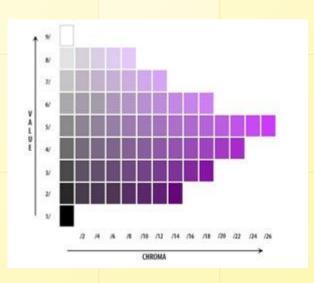
如k=3时

$$S_{\beta} = \frac{(-y_1 - y_3)^2}{2r}$$

当信号水平间隔不等时

$$S_{\beta} = \frac{\left[\sum_{k=1}^{K} (b_{k} - \bar{b})^{2} y_{k}\right]^{2}}{r_{0} \sum_{k=1}^{K} (b_{k} - \bar{b})^{2}}$$


当信号因素M非线性效应不大时


$$S_{\beta} = \frac{K}{N} \sum_{k=1}^{K} y_{k}^{2} - \frac{1}{N} (\sum_{i=1}^{N} y_{i})^{2}$$

动态特性SN比越大,表示输出特性y对信号因素M的灵敏度越高,可调节性越好,波动越小,抗干扰能力越强。

动态特性设计

例4-8 染料着色度(色调浓度)设计

动态特性设计

(1) 选因素及水平

表 4-28 控制因素水平表

因素	A	В	\boldsymbol{c}	D	E
水平	染料	印染温度	芒硝	离子浓度	溶比
1	新染料	常温	原用量的 1/2	原有值 -0.5	原有值×2
2	现用染料	高温	原用量	原有值	原有值

以染料用量为信号因素,取3个水平 以带浆度为误差因素,取2个水平

(2) 内表和外表的配列

例4-8 染料着色度(色调浓度)设计

表 4-29 配列与数据

因素			内	表	记 列			外表配列与数据					
/~~	В	E	$B \times E$	С	A	$E \times C$	D	N.	1 ₁	M	12	M	1 ₃
试验号	1	2	3	4	5	6	7	K ₁	K ₂	K_1	K ₂	K_1	K ₂
1	1	1	1	1	1	1	1	5. 2 5. 6	5. 9 5. 8	12. 3 12. 1	12. 4 12. 5	22. 4 22. 6	22. 5 22. 2
2	1	1	1	2	2	2	2	6. 0 5. 7	5. 9 6. 0	14. 4 14. 8	15. 4 14. 4	27. 8 26. 9	28. 3 28. 8
3	. 1	2	2	,1	1	2	2	5. 1 5. 4	5. 5 5. 8	10. 5 10. 6	10. 9 10. 8	17. 8 17. 2	18. 4 18. 3
4	1	2	2	2	2	1	1	6. 4 6. 7	6. 4 5. 8	15. 5 14. 9	16. 0 15. 8	29. 0 28. 3	29. 7 31. 1
5	2	1	2	1	2	1	2	5. 1 5. 4	5. 4 5. 5	12. 1 11. 9	11. 6 11. 7	25. 2 24. 8	25. 5 25. 7
6	2	1	2	2	1	2	1	6. 4 6. 6	6. 9 6. 6	14. 8 15. 0	15. 0 15. 0	31. 0 31. 3	32. 5 31. 4
7	2	2	1	1	2	2	1	5. 5 5. 6	5. 9 6. 0	11. 8 12. 4	13. 6 13. 2	23. 2 23. 6	24. 0 25. 4
8	2	2	1	2	1	1	2	6. 8 6. 6	6. 8 6. 5	15. 9 16. 3	15. 9 16. 7	31. 8 31. 7	31. 4 32. 4

(3) SN比方差分析

例4-8 染料着色度(色调浓度)设计

表 4-30 SN 比结果分析表

因素	(1)	(2)	(3)	(4)	(5)	(6)	(7)	$y_i(\eta)$
试验号	В	.	$B \times E$	C	A	$E \times C$	D	J1(4)
1	1	1	1	1	1	1	1	13. 6
2	1	1	1 .	2	2	2	2 ·	13. 1
3	1	2	2	1	1	2	2	12. 0
4	1	2	2	2	2	1	1	13. 0
5	2	1	2	1	2	1	2	19. 3
6	2	1	2	2	1	2	1	18. 3
7	2	2	1	1	2	2	1	13. 4
- 8	2	2	1	2	1	1	2	14. 8
y_{j1}	51.7	64. 3	54. 9	58. 3	58. 7	60.7	58. 3	8
$\gamma_{\mathcal{D}}$	65. 8	53. 2	62. 6	59. 2	58. 8	. 56.8	59. 2	$\sum_{i=1}^{n} y_i(\eta) = 117.5$
\bar{y}_{j1}	12. 925	16. 075	13. 725	14. 575	14. 675	15. 175	14. 575	•-1
ν _{j1} ν _{p2}	16. 450	13. 300	15. 650	14.800	14. 700	14. 200	14. 800	
S_{j}	24. 85	15. 40	7.41	0. 10	0.00	1. 90	0. 10	
$oldsymbol{F_j}$	370. 9	229. 9	110. 6			28. 4	<u></u>	$S_e = S_4 + S_5 + S_7 = 0.20$
α_j	0. 01	0. 01	0. 01	_	_	0. 05		$f_e = 3$
$oldsymbol{eta_j}\%$	49. 81	30. 81	14. 76	_		3. 68	<u> </u>	$\beta_e = 0.94$

取显著因素,最佳组合 $B_2E_1C_1$. 与现行条件相比

$$\hat{\mu} = \overline{B_2 E_1} + \overline{C_1 E_1} - \overline{C_1} - \overline{E_1} + \overline{y} = 18.53 \quad (dB)$$

$$\hat{\mu}_0 = \overline{B_2 E_2} + \overline{C_2 E_2} - \overline{C_2} - \overline{E_2} + \overline{y} = 14.59 \quad (dB)$$

$$\hat{\mu} - \hat{\mu}_0 = 18.53 - 14.59 = 3.94$$
 (dB)

可见,着色度损失较现在,约减小四分之一。

4.11 稳健性技术开发

4.11.1 质量特性层次

分为下游、中游、上游和源游4个层次

- (1) 下游质量特性: 用户质量特性
- (2) 中游质量特性: 图纸特性
- (3) 上游质量特性: 目标功能特性
- (4) 源游质量特性: 基本功能特性

稳健设计主要寻求解决功能偏离理想值波动 下游和源游段各种因素对质量特性的影响

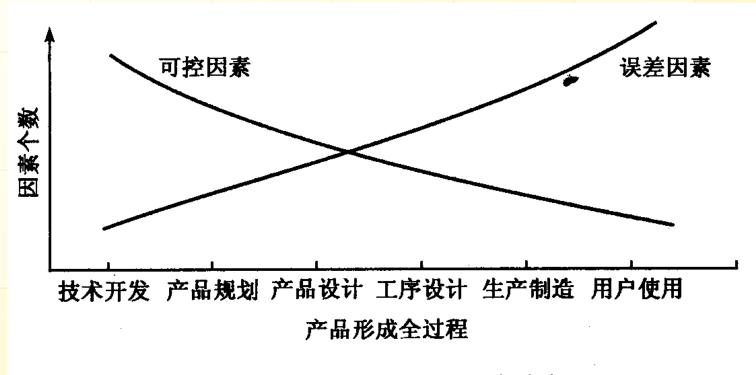


图 4-8 控制因素与误差因素分布

4.11.2 稳健性技术开发及特点

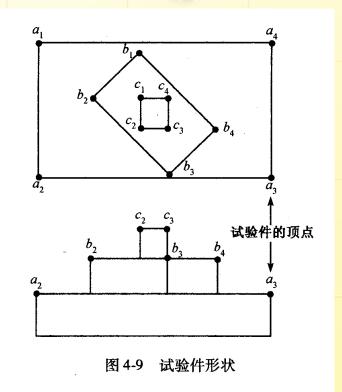
稳健设计可以用于产品设计源游段,并在实验室实施,具有实际再现性。

- (1) 研究结果具有实际产品再现性;
- (2) 小规模试验具有生产过程再现性;
- (3) 有限条件具有各种使用条件再现性。

故稳健设计在产品设计、生产现场和用户使用方面,能够发挥显著作用。

稳健性技术关键点

(1) 基本功能设计


零件或部件通常都有某种功能,在技术开发初期,要注意其基本功能,而不是其本身。

(2) 试验件设计

在实现基本功能条件下,尽量简化,采用容易试验安装和测量的形状,相关的输入输出的计测特性好,如选取水平宽的信号因素形状等。

例4-9 加工难切削材料的稳健性技术开发设计

(1) 试验件形状设计 试验件共有12个顶 点,信号因素为其之间 距离,其水平共66个, 可以用NC数据输入。 成型品的测定则可用三 维坐标测量仪,通过计 算输出。

(2) 内外表设计及SN比计算

表 4-31 信号因素水平表

水	平	M_1	<i>M</i> ₂	<i>M</i> ₃	•••	M ₁₂	<i>M</i> ₁₃	• • •	M ₆₆
直线		$a_1 \sim a_2$	$a_1 \sim a_3$	$a_1 \sim a_4$	* * *	$a_2 \sim a_3$	$a_2 \sim a_4$	•••	$c_4 \sim c_3$

表 4-32 因素水平表

		水平	1	2	3
		因素			
	A	切削方向	往上	往下	_
	B	切削速度/(m・min ⁻¹)	慢	标准	快
	C	进刀速度/(m・min ⁻¹)	慢	标准	快
控制	D	工具材料	软	标准	硬
控制因素	E	工具刚性	低	标准	髙
	F	扭转角	小	标准	大
	G	斜角	小	标准	大
	H	进刀量	小	标准	大
误差 因素	N	材料硬度	软	硬	-

1.内表设计

 $L_{18} (2 \times 3^7)$

控制因素

2.外表设计

信号因素误差因素

表 4-33 内表试验方案及结果分析

\ .	1	2	3	4	5	6	7	8	$oldsymbol{\eta}_i$	S_{i}
i	A	В	C	D	E	F	G	Н	n	·
	1	1	1	1	1	1	1	1	31.41	-0.0022
1	1	1	2	2	2	2	2	2	39.70	0.0058
2	1	1 1	3	3	3	3	3	3	39.68	0.0028
3	1	2	1	1	2	2	3	3	9. 25	0.0730
4	1	2	2	2	3	3	1	1	44. 56	-0.0001
5		2	3	3	1	1	2	2	42. 04	0.0020
6	1	3	1	2	1	3	2	3	33.75	0.0057
7	1	3	2	3	2	1	3	1	44. 59	0.0003
8	1	3	3	1	3	2	1	2	19. 18	0. 1114
9	1		1	3	3	2	2	1	42. 80	0.0011
10	2	1	2	1	1	3	3	2	30. 55	0. 0145
11	2	1	3	2	2	1	1	3	26. 41	0.0166
12	2	1		2	3	1	3	2	25. 86	0.0148
13	2	2	1	3	1	2	1	3	35. 24	0.0056
14	2	2	2		2	3	2	1	42. 52	0.0022
15	2	2	3	1		3	1	2	41.01	-0.0009
16	2	3	1	3	2		2	3	2.63	0. 1801
17	2	3	2	1	3	1		1	39. 30	0. 0025
18	2	3	3	2	1	2	3	L	39.30	

表 4-34 外表试验件试验数据(第1号试验)

(单位:mm)

W. F. FT #	M_1	M_2	•••	M ₆₆
信号因素	$a_1 \sim a_2$	$a_1 \sim a_3$	•••	$c_4 \sim c_3$
误差因素	71.000	84. 599		11.000
N_1	70. 992	84. 607	•••	10. 958
N_2	70. 991	84. 607	•••	10. 955
合计	141. 983	169. 214	***	21. 913

3) 切削加工最佳条件分析

表 4-35 因素水平效应分析

指标		SN 比的 η			灵敏度 S		
控制因素	1	2	3	R	1	2	3
A	33.79	31.81		0. 02	0. 0110	0. 0263	
В	35. 09	33. 24	30. 08	5. 01	0.0065	0. 0162	0. 0332
\boldsymbol{c}	30. 68	32. 88	34, 85	4. 17	0.0153	0.0344	0.0063
D	22. 59	34. 93	40. 89	18. 30	0. 0465	0.0076	0.0018
E	25. 38	33. 91	29. 12	8. 53	0.0047	0.0162	0. 0350
F	28. 82	30. 91	38. 68	9. 86	0. 0353	0.0166	0.0040
\boldsymbol{G}	32, 97	33. 90	31. 54	2. 36	0.0051	0. 0328	0.0180
H	40. 86	33. 05	24. 49	16. 37	0.0006	0. 0079	0. 0473
总平均值		3	2. 8			0. 0186	

(1) SN比最佳条件

(2) 灵敏度最佳条件

3) 切削加工最佳条件分析

(3) 验证试验

表 4-36 估计值与验证值

指标	SN H	ヴ η/dB	灵铋	度β
条件	估计	验 证	估计	验证
最佳	57. 24	54. 09	0. 9935	0. 9939
初始	33.73	34. 71	0. 9989	0. 9992
増益	23. 51	19. 38		_

最佳值的SB比和绝对值的再现性都很高

设计时可取
$$M = \frac{y}{\beta} = \frac{y}{0.9939} = 1.0061y$$

本章小结

介绍了稳健设计基本概念、SN比试验设计和 稳健设计(系统设计、参数设计和容差设计)的 基本方法。

主要用于开发高可靠性和稳定性、抗干扰能力强、优质低成本的产品。基本思想是利用正交设计(直接择优)和SN比设计(稳定性择优)选择最佳的参数组合与最合理的容差范围。

第五章 广义试验设计

5.1 广义试验设计

广义试验一般指非实物试验,如抽样调查、 生产计划选优、项目决策选优、生产线故障判别、 产品质量检验、产品寿命试验、模拟试验等。

广义试验设计就是要解决如何科学合理的获取信息,并有效分析与利用收集到的信息。

5.2 故障判析设计

批量生产中零部件的问题较难发现,如汽车制造中,数百个零件才会出现一个,要发现其原 因则更加困难。

为寻求被隐藏在很多零部件中,故障率又非常低的缺陷的原因,可以利用故障判析设计。

例5-1 齿轮箱故障判析

若齿轮箱装配线300个产品中有一个问题产品,每天组装100件,一个月可以收集到10个不合格产品。

齿轮箱故障判析

分别取8个合格产品和不合格产品,拆开选择10个可疑零件作为考察因素,产品类型即为因素水平。然后按 L_{16} (2^{15})重新组装,测定其噪声水平,就可找出影响显著的问题零件。

5.3 寿命试验设计

产品的寿命试验一般耗资大、时间长,并且 受条件限制,往往缺乏代表性。若组织生产、销售和使用三方进行寿命试验,可以取得较好效果。

例5-2 汽车轮胎寿命试验

选择6个因素,其中5个为制造因素,一个为不同车辆,一个为不同位置。考察制造因素的两个交互作用。

试验数据从销售给顾客,跑了一定里程的车辆上获取。采用L₁₆(4²×2⁹)试验。

采用 L_{16} ($4^2 \times 2^9$) 试验, 因素及水平见表:

水平	Α	В	С	D	Е	F	G
						不同 <mark>车</mark> 辆	不同位置
						41/1	
1	1	1	1	1	1	1	1 (右前)
2	2	2	2	2	2	2	2 (左前)
3						3	3 (右后)
4						4	4 (左后)

状态	两肩快速磨损	中间快速磨损	胎面裂缝	单边磨损	羽边形磨损	秃斑	扇形磨損
结果		1111					
原因	气压不足 或换位不够	气压太足 或换位不够	气压不足 或超速	过度外倾	前東不当	车轮不平衡 或轮胎歪斜	轮胎换位不明 或是挂校准 不好或磨损
校正		大态下调整到抗力,轮胎换位	规定	调整外倾	调整前束	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	不好或確如 检查悬挂和 轮胎换位

5.4 市场分析试验设计例5-3 卷发器试销试验选择L₈(2⁷)安排试验

表 5-1 因素水平表

因素	A	В	С	D	E	$oldsymbol{F}$
水平	最高温度/℃	温度分档	热管表面涂层	出厂价/(元/把)	包 装	插头导线
1	130	高低温度2档	聚四氟乙烯	7. 18	纸盒	甲厂产品
2	170	高温1档	镀铬	5. 58	塑料盒	乙厂产品

卷发器试销试验

表 5-2 试验方案及结果分析

因素	A(1) 最高温度/℃	B (2) 温度分档	C(3) 热管表面涂层	D (4) 出厂价/(元/把)	E (5) 包装	F (6) 插头导线	(7)	y _i 销售量
1	1(130)	1(2档)	1(聚四氟乙烯)	2(5.58)	2(塑料盒)	1(甲厂产)	1	49
2	2(170)	1	2(镀铬)	2	1(纸盒)	1	2	91
3	1	2(1档)	2	2	2	2(乙厂产)	2	48
4	2	2	1	2	1	2	1	66
5	1	1	2	1(7.18)	1	2	1	55
6	2	1	1	1	2	2	2	31
7	1	2	1	1	1	1	2	23
8	2	2	2	1	2	1	1	50
<i>y_j</i> 1	175	226	169	159	235	213	220	
У _Р 2	238	187	244	254	178	200	193	
R	63	39	75	95	57	13	27	8
优水平	A_2	B_1	C_2	D_2	$\boldsymbol{E_1}$	$\boldsymbol{\mathit{F}}_{1}$		$\sum_{i=1} y_i = 41$
主次因素			D,	C,A,E,B,F				
最优组合			$A_2 E$	$B_1C_2D_2E_1F_1$				

例5-4 电冰箱市场分析 选择因素及水平,采用 L_9 (3⁴) 安排试验

表 5-3 因素水平表

大平 大平	<i>A</i> 颜色	<i>B</i> 容积∕L	C 品种	D 促销措施
1	乳白色	175	单门	商品展览
2	果绿色	186	双门	报纸广告
3	奶黄色	210	多门	电视广告

电冰箱市场分析

表 5-4 试验方案及结果分析表

		D.	С	D	2/	y_{i2}	<i>y</i> _{i3}	y *	
i j	A 颜色	<i>B</i> 容积	品种	促销措施	y _{ii} 销售量/台		利润总额/元	综合评分	
1	1	1	1	1	55	725	9500	60	
2 ·	1	2	2	2	50	950	9180	45	
3	1	3	3	3	90	1315	21 600	100	
4	2	1	2	3	80	815	18 400	90	
5	2	2	3	1	72	1182	11 120	70	
6	2	3	1	2	68	875	10 200	65	
7	3	1	3	2	71	1050	12 240	75	
8	3	2	1	3	51	820	10 050	55	
9	3	3	2	1	78	1148	13 452	80	
<i>y</i> _j *	205	225	180	210	,			$\sum_{1}^{9} \gamma^{*} = 640$	
<i>y</i> _{j2} *	225	170	215	185	<u> </u>				
$y_{j3}^{\ *}$	210	245	245	245	注,从名	销售结果、综合	评分和 A 因素	是次要因素	
R_{j}	20	75	65	60					
优水平	A ₂	B ₃	C_3	D_3	等方面综合考虑,选 $A_1B_3C_3D_3$ 为最优组合,验证试验也表明 $A_1B_3C_3D_3$ 优于 $A_2B_3C_3D_3$				
主次因素		В, е	C, D, A						
最优组合		$A_2B_3C_3D_3$	$(A_1B_3C_3$	D_3)		·			

5.5 数学试验设计

如果能够建立指标与因素之间的定量关系,就可以利用其进行数学试验设计,如经验公式、目标函数或数学模型。

数学试验可以节省试验费用,同时也可以有效 减少运算次数,特别对运算量极大的问题,会产 生显著的效果。 进行数学试验设计可以选用大号正交表,并根据情况灵活应用。

1) 一轮设计只用一张正交表

不超过6个因素时,选用 L_{25} (56);

7-8个因素,选用L₄₉(78);

9个因素,选用L91(910)。

若要减少上机时间或试验处理组合,可以采用 混合正交表、非标准正交表。

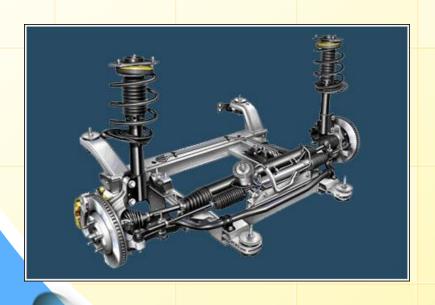
2) 一轮设计由几张三水平正交表组成

例如,对13个因素,考察9个水平,选用4张

 L_{27} (3¹³):

第一张表 L_{27} (3¹³)安排因素水平1,5,9;

第二张表安排因素水平2,5,8;


第三张表安排因素水平3,5,7;

第四张表安排因素水平4,5,6。

试验时,根据需要决定是否进行下一轮试验。

例5-5 汽车振动参数最佳匹配试验

汽车行驶的平顺性与车身加速度a的方差σ²有 关,而σ²又与车身和车轮两个自由度系统的振动 参数有关。

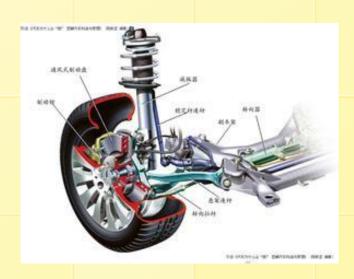
振动参数共有4个:

车身固有频率

车身相对阻尼系数

质量比

刚度比


其中 M为车身质量 m为车轮质量 K为减震阻尼系数 C为弹簧刚度 C2为轮胎刚度

$$\omega_v = \sqrt{\frac{C}{M}}$$

$$\psi = \frac{K}{2\sqrt{C/M}}$$

$$\mu = \frac{M}{m}$$

$$\gamma = \frac{C_2}{C}$$

(1) 选定试验因素及水平

根据汽车振动参数设计取值范围,选定4个振

动参数水平值:

表 5-5 因素水平表

水平 因素	ω_0	ψ	μ	γ .
1	6	0. 5	9	3
2	18	0.3	3	9
3	12	0. 1	6	6

(2) 试验指标

取综合振动指标作为试验指标

$$\sigma^2 = \sigma_a^2 + \sigma_f^2 + \sigma_F^2$$

其中

 σ_f^2 为汽车悬架动挠度 f_a 的方差

 σ_F^2 为车轮与地面间的动载荷 F_d 的方差

(3) 振动参数与试验指标之间关系

由研究或试验

$$\sigma_{a}^{2} = 2\sum_{i=1}^{20} S_{q}(n\Delta f) \left| \frac{a}{q}(n\Delta f) \right|^{2} \Delta f$$

$$\sigma_{f}^{2} = 2\sum_{i=1}^{20} S_{q}(n\Delta f) \left| \frac{f_{d}}{q}(n\Delta f) \right|^{2} \Delta f$$

$$\sigma_{F}^{2} = 2\sum_{i=1}^{20} S_{q}(n\Delta f) \left| \frac{F_{d}}{Gq}(n\Delta f) \right|^{2} \Delta f$$

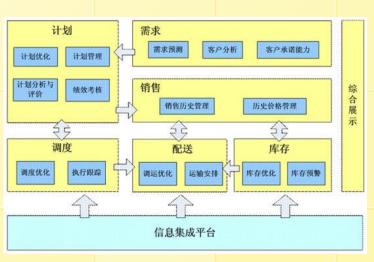
其中,各项为汽车振动参数、系数或载荷,由 研究报告给出或确定,并进行计算。

(4) 试验方案及结果

选用 L_g (34) 正交表,试验方案及结果见表:

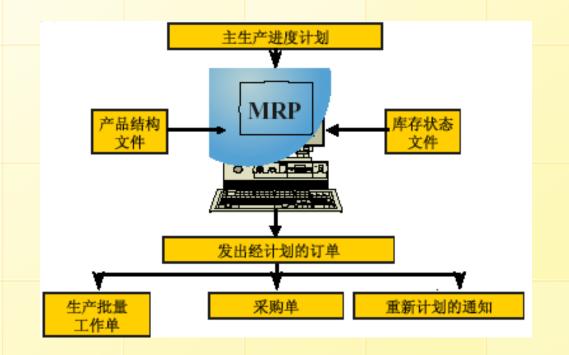
表 5-6 试验方案及结果分析

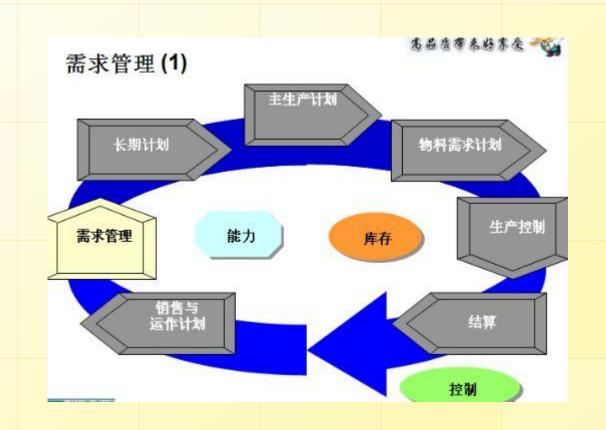
因素	ω_0	ψ	μ	γ	σ_a^2	σ_f^2	σ_F^2	σ^2
试验号		·					<u></u>	
1	1(6)	1(0.5)	3(6)	2(9)	889 740	87. 6	1.4	889 829
2	2(8)	1	1(9)	1(3)	8 743 550	24. 1	8.4	8 743 5 83
3	3(12)	1	2(3)	3(6)	4 975 770	44. 1	6. 9	4 975 821
4	1	2(0.3)	2	1	421 649	185. 2	0.4	421 835
5	. 2	2	3	3	11 194 100	41.4	14. 0	11 194 155
6	3	2	1	2	4 398 520	62. 7	6. 8	4 398 590
7	1	3(0.1)	1	3	770 003	57.7	1.6	770 512
8	2	3	2	2	17 301 000	126. 9	129. 2	17 301 256
9	3	3	3	1	2 176 120	88. 1	3. 2	2 176 211
y_{j1}	2 082 176	14 609 233	13 912 685	11 341 629			9	
y_{j2}	37 238 994	16 014 580	22 698 912	22 589 675			$\sum_{i=1} \sigma^2$	=50 871 792
У _ј 3	11 550 622	20 247 979	14 260 195	16 940 488				
R	35 156 818	5 638 746	8 786 227	11 248 046				
优水平	ω_{01}	ψ_1	$oldsymbol{\mu}_1$	γ_1				
最优组合		$\omega_{01} \psi$						


5.6 生产计划试验设计

生产计划及效益对于企业非常重要,生产计划的效益受产品结构、产量、成本、利润、原料利用、能源分配等多种因素影响。采用试验设计可以科学合理的分析多种因素对生产计划的综合

影响。





生产计划试验设计,应该进行以下几项工作:

- (1) 对各产品市场进行调查、预测
- (2) 对现有产品结构进行分析
- (3) 确定各产品产量与原料及能源间的关系

在此基础上,选定考察的主要因素及其水平,制定试验方案,配列试验表格,通过统计或计算的方法求得试验数据,分析得到最佳生产计划。

例5-6 橡胶厂调整产品结构试验设计

(1) 对现有产品结构调查及计算

表 5-7 产品单利表

产品名称	丁苯 胶乳	丁晴	ABS 树脂	聚苯	油胶	软胶
単利/ (千元・t ⁻¹)	2. 2	1.60	1. 75	1. 30	0. 54	0. 55

(2) 对现有产品结构及效益分析

原料中, 合成酒精的产量、苯乙烯的分配,

对总利润有较大影响。

(3) 确定各产品产量与原料、燃料用量的关系

5种产品: A、B、C、D、E

8种原料: F、G、H、I、J、K、M、N

2种燃料: U、V

共计15个因素,有11个定量关系式,其中有4 个为独立因素。

(4) 确定考察因素及其水平

2种产品: D、E

2种原料: M、N

共4个因素,各取3个水平

表 5-8 因素水平表

因素 水平/10 ⁴ t	D 合成酒精	E 粮食酒精	M 油胶	N 丁晴
1	2. 5	3.0	0. 4	0. 44
2	3. 0	2. 0	0.8	0.42
3	3.5	2. 5	1. 2	0.40

(5) 制定试验方案

4因素3水平试验,选择 L_9 (3^4)正交表安排试

验

表 5-9 试验方案及结果分析

因素	D 合成酒精	E 粮食酒精	M 油胶	N 丁晴	<i>y_i</i> 利润/万元				
1	1(2.5)	1(3.0)	3(1.2)	2(0.42)	3194				
2	2(3.0)	1	1(0.4)	1(0.44)	3265				
3	3(3.5)	1	2(0.8)	3(0.40)	3434				
4	1	2(2.0)	2	1	3023				
5	2	2	3	3	3191				
6	3	2	1	2	3258				
7	1	3(2.5)	1	3	2952				
8	2	3	2	2	3228				
9 .	3	3	3	1	3504				

(6) 试验结果及分析 由极差法知,最优方案为D₃E₁M₃N₁, 计算利润 为3575万元。

					~ X
因素	D	E	М	N	y_i
试验号	合成酒精	粮食酒精	油胶	丁晴	利润/万元
y_{j1}	9169	9893	9475	9792	$\sum_{i=1}^{9} \gamma_{i} = 29\ 049$
<i>y</i> _{j2}	9684	9472	9685	9680	$\sum_{i=1} y_i = 29 \ 049$
y_{j3}	10 196	9684	9889	9577	
R_j	1027	421	414	215	
优水平	D_3	E_1	M_3	N_1	
最优组合		D_3E_1M	I_3N_1		

续表

本章小结

- (1) 故障判别试验设计
- (2) 生产计划选优
- (3) 抽样调查
- (4) 项目决策选优
- (4) 生产线和产品质量检验
- (5) 产品寿命试验
- (6) 模拟试验

第7章 均匀设计

7.1 均匀性

正交设计(正交表)

正交性 均匀性 综合可比性

 $E_k =$

 $\begin{pmatrix}
1 & 0 & \cdots & y_1 & \cdots & 0 \\
0 & 1 & \cdots & y_2 & \cdots & 0 \\
0 & 0 & \cdot & y_3 & & 0 \\
\cdot & \cdot & \cdot & y_k & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & y_m & \cdots & 1
\end{pmatrix}$

特点: "均匀分散,整齐可比"

"均匀分散,

均匀性:

试验点均匀分布, 具有代表性

整齐可比"

综合可比性:

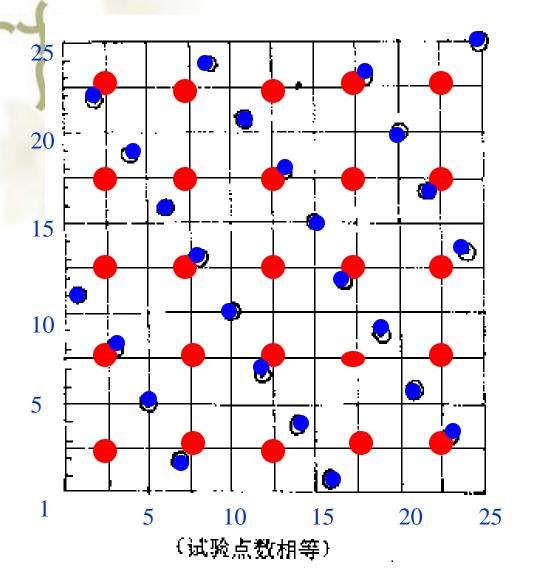
分析方便,能估计因、交互作用 从x_i的变化,可分析对y_i的影响

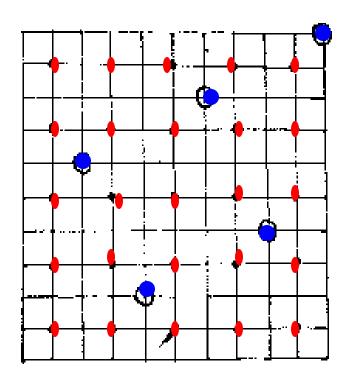
但任两列为全面试验 试验次数受N限制

正交设计点不能过少, 故点分布不够均匀

若使试验点充分均匀,但又不失去主要信息

均匀设计: 试验点分布更均匀, 试验次数最少


例:三因素五水平试验


正交试验: $L_{25}(5^6)$ N=25, b=5 (重复 5 次)

均匀设计: N=25, b=25 (分布更匀)

N=5, b=5 (最少点数)

任两列为全面试验,其试验点分布为:

试验点数不等

由图5-1可见:

若试验次数N相等,则水平分布充分均匀 若试验水平B相等,则试验次数显著减少 实际上:

 $5 \le N \le 25$

均匀设计与正交设计相比:

从局部看,不如正交设计

从全局看, 其结果接近最优点

所以,可以快速抓住试验的主特征

均匀设计特点:

总试验次数 N 少 ,如6⁴试验 ,全面试验 1296 正交设计 72 均匀设计 6

主要适用于:

- 多水平因素试验
- 快速分析试验
- 试验费用高昂的试验
- 初步试验,寻优试验

7.2 均匀设计表

$$U_a(b^C)$$

U-均匀设计表

a-试验次数

b-试验水平数

c-U表列数,试验因素数

如:
$$U_5(5^4), U_6(6^6), U_7(7^6), U_8(8^6) \cdots$$
以 $U_6(6^6)$ 为例

均匀设计表 如: $U_5(5^4), U_6(6^6), U_6(6^4)$

表 7-1 U_5 (5 ⁴

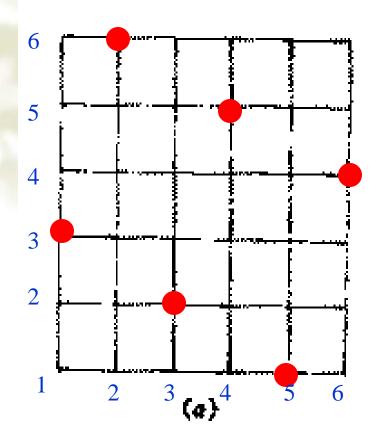
列号	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1
5	5	5	5	5

表 7-2 $U_6(6^6)$

701 🗆			· · · · · · · · · · · · · · · · · · ·			
列号 试验号	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	. 1	6	4	2
6	6	5	4	3	2	1

表 7-3 $U_6^*(6^4)$ 表

列号	1	2	3	4
1	1	2	3	6
2	2	4	6	5
3	3	6	2	4
4	4	1	5	3
5	5	3	. 1	2
6	6	5	4	1

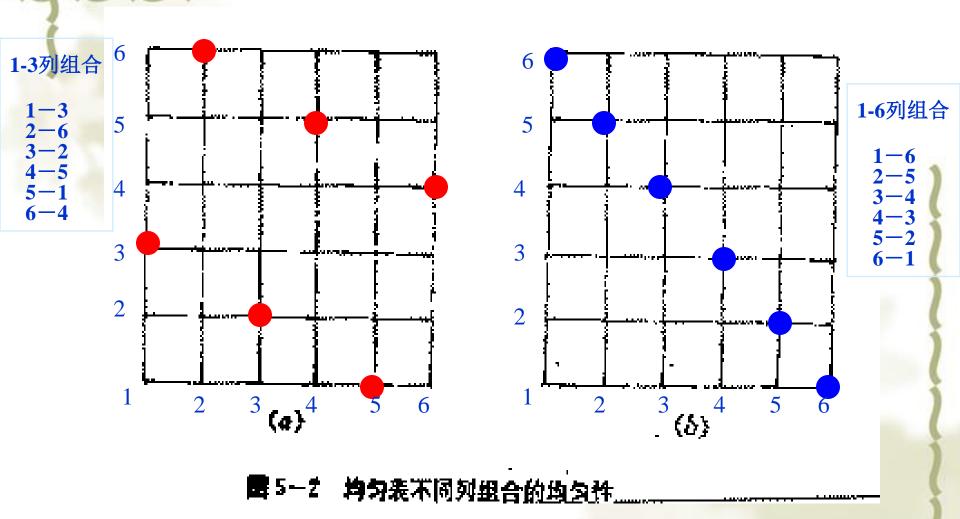

U表分布特点:

- 1、每个因素的各水平只做1次试验,没有重复
- 2、两因素试验的平面分布每行每列上恰有1个点

如 U₆(66)表中的1-3列

AXI^{-2} $U_{K}\setminus U_{I}$	表	7-2	U_{κ}	(6^6)
-----------------------------------	---	-----	--------------	---------

列号	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	. 1	6	4	2
6	6	5	4	3	2	1


1-3列组合

任两列试验点分布 每行每列上恰有1个

3、任两列试验组合的分布均匀性不一定平等 如U₆(6⁶)表中的1-3列和1-6列

1-3列组合 1-3 2-6 3-2 4-5 5-1 6-4

表 7-2 U ₆ (6 ⁶)								
列号	1	2	3	4	5	6		
1	1	2	3	4	5	6		
2	2	4	6	1	3	5		
3	3	6	2	5	1	4		
4	4	1	5	2	6	3		
5	5	3	. 1	6	4	2		
6	6	5	4	3	2	1		

U表一定,各列组合均匀性也一定 故每张U表附有一张使用表,供设计用

一般,按使用表设计试验,可提高试验均匀性 如 $U_5(5^4)$ 表

表 7-4 $U_5(5^4)$ 的使用表

因素数		列	号	
2	1	2		
3	1	2	4	
4	1	2	3	4

4、一般

奇数表: $U_5(5^4), U_7(7^6), U_9(9^6), U_{11}(11^{10}), U_{13}(13^{12}) \cdots$

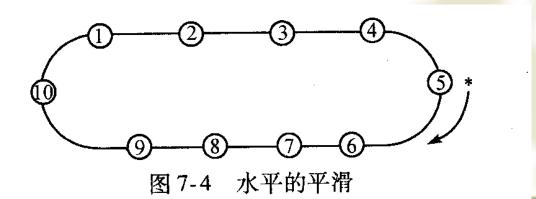
偶数表: $U_6(6^6), U_8(8^6), U_{10}(10^{10}), U_{12}(12^{12}) \cdots$

将奇数表的最后一行划去,得到偶数表

如: $U_7(7^6) \longrightarrow U_6(6^6)$

5、对因素水平不等的情况(混合水平)

如: $3^3 \times 2^1$ 不等水平试验,若选 $U_6(6^6)$


$$\{1,2\} \Rightarrow 1, \{3,4\} \Rightarrow 2, \{5,6\} \Rightarrow 3$$

$$\{1,2,3\} \Rightarrow 1, \qquad \{4,5,6\} \Rightarrow 2$$

但组合后混合表的均匀性不一定好

- 一般,应按混合水平指导表进行设计
- 6、试验时,各因素水平次序不可改变但可平滑

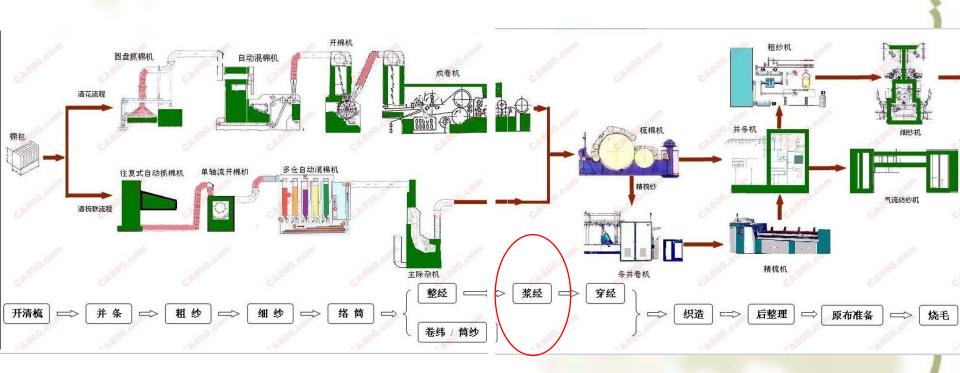
如 $U_{10}(10^{10})$,第 1 列: **1** , 2 , 3 , … 8 , 9 , 10 平 滑: 5 , 6 , 7 , … 2 , 3 , 4

7.3 均匀试验设计

设计方法:

1、因素及其水平数

- U表
- 2、使用表或混合水平指导表 _____方案
- 3、结果分析: 直观法


回归分析

具体见例5-1

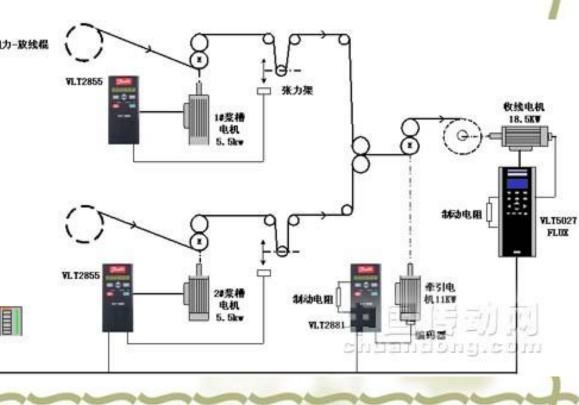
例5-2 无粮上浆均匀试验设计

上浆是纺织的重要工序之一,经纱在织造之前

一般需要上浆,以提高其机械强度。

项 目	小试	批量
PVA/kg	37.5	37.5
变性淀粉/kg	25	37.5
PT/kg	3	3
润滑剂/kg	2	2
抗静电剂/kg	2	2
含固量/%	7.5	9.4
浆槽粘度/s	6~8	8.5~9.5
主压浆力/kN	8 ~ 12	16 ~ 20

表 1 浆前后单纱性能指标比较


_		
项 目	原纱	上浆单纱
断裂强力/Cn	264	271.8
单强不匀率 CV/%	11.2	7.87
断裂伸长/mm	15.	17.2
断裂伸长不率%。	72	12.58
毛羽根数根	14.30	26
耐磨次数/次	67.52	78.95

为节约粮食,进行无粮上浆均匀试验设计,用 CMC(羟甲基纤维钠)代替淀粉。拟进行5³因素试验,寻求CMC最佳生产工艺。

表 4 浆膜性能测试值

项 目	实验测试值
浆膜厚度/mm	0.075
断裂强力/cN	410
断裂伸长率/%	10.11
水溶速率/s	10. 3

注:对该浆料配方浆膜测试10次,取其平均值。

5章 均匀设计

a.选择 U_5 (5⁴),按使用表A、B、C \rightarrow 1、2、4

表 7-6 $U_5(5^3)$ 试验方案

因素	(1) A 碱化时间/min	(2) B 烧碱浓度/(°)	(4) C 醚化时间/min
1	1(120)	2(26)	4(135)
2	2(135)	4(28)	3(120)
3	3(150)	1(25)	2(105)
4	4(165)	3(27)	1(90)
5	5(180)	5(29)	5(150)

表 7-4 $U_5(5^4)$ 的使用表

因素数		列	号	
2	1	2		
3	1	2	4	
4 .	1	2	3	4

b.选择 U_{10} (10¹⁰) ,按使用表A、B、C→1、5、7 原水平在试验时各拟一个水平。

表 7-7 $U_{10}(10^3)$ 拟水平试验方案

因素	(1) A	(5) B	(7) C
试验号	碱化时间/min	烧碱浓度/(°)	醚化时间/min
1	1(120)	5(29)	7(105)
2	2(135)	10(29)	3(120)
3	3(150)	4(28)	10(150)
4	4(165)	9(28)	6(90)
5	5(180)	3(27)	2(105)
6	6(120)	8(27)	9(135)
7	7(135)	2(26)	5(150)
8	8(150)	7(26)	1(90)
9	9(165)	1(25)	8(120)
10	10(180)	6(25)	4(135)

7章 均匀记

c.选择 U_{10} (10¹⁰) ,按使用表A、B、C \to 1、5、7 A和C分为10个水平,B仍为5水平,并按拟水平设计。

表 7-8 $U_{10}(10^3)$ 试验方案

因素	(1) A	(5) B	(7) C
试验号	碱化时间/min	烧碱浓度/(°)	醚化时间/min
1	1(120)	5(29)	7(132)
2	2(127)	10(29)	3(104)
3	3(134)	4(28)	10(153)
4	4(141)	9(28)	6(125)
5	5(148)	3(27)	2(97)
6	6(155)	8(27)	9(146)
7	7(162)	2(26)	5(118)
8	8(169)	7(26)	1(90)
9	9(176)	1(25)	8(139)
10	10(183)	6(25)	4(111)

7章 均匀设

d.选择 U_{13} (13¹²),按使用表A、B、C \rightarrow 1、3、4

A、B和C均取13个水平,并对A因素水平进行平滑。

表 7-9 U13(133)试验方案

因素	(1) A	(3) B	(4) C
试验号	碱化时间/min	烧碱浓度/(°)	醚化时间/min
1	1(120)	3(25)	4(105)
2	2(125)	6(26.5)	8(125)
3	3(130)	9(28)	12(145)
4	4(135)	12(29.5)	3(100)
5	5(140)	2(24.5)	7(120)
6	6(145)	5(26)	11(140)
7	7(150)	8(27.5)	2(95)
8	8(155)	11(29)	6(115)
9	9(160)	1(24)	10(135)
10	10(165)	4(25.5)	1(90)
11	11(170)	7(27)	5(110)
12	12(175)	10(28.5)	9(130)
13	13(180)	13(30)	13(150)

课堂作业:均匀试验方案设计

采用均匀设计进行5³(3因素5水平)的谷物干燥初步试验,取较宽水平考察热风温度t、风速u和谷物层厚度h对干燥速率V的影响。各因素水平范围为: t=50~70℃, u=0.5~2.5m/s, h=15~35mm。试给出:

- (1) 因素水平表
- (2) 选择均匀表,进行表头设计
- (3) 给出试验方案

课堂作业:均匀试验方案设计

表 7-1 U₅(5⁴)

列号
1 2 3 4

1 1 2 3 4

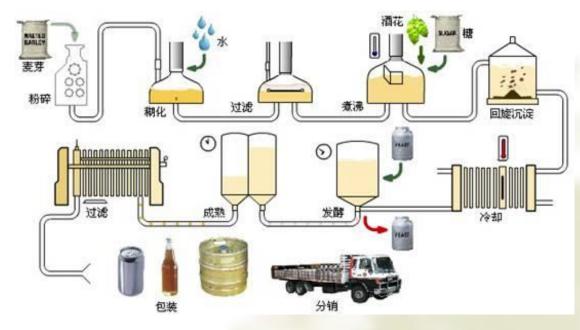

2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
5 5 5 5 5

表 7-4 $U_5(5^4)$ 的使用表

因素数	7.774.1	列	号	
2	1	2		
3	1	2	4	
4	1	2	3	4

例5-1 在啤酒生产的某项试验中,选定两个因素,底水(g)和吸氨时间(min)。考察其对吸氨量(g)的影响。

选定两个因素,都取9个水平,进行均匀试验,因素水平表如表7-10所示,试验指标为吸氨量(g)。

表 7-10	因素水平表

水平 因素	1	2	3	4	5	6	7	8	9
z ₁ 底水/g	136. 5	137. 0	137. 5	138. 0	138. 5	139. 0	139. 5	140. 0	140. 5
z ₂ 吸氨时间/min	170	180	190	200	210	220	230	240	250

1、试验方案设计

选 $U_9(9^9)$ 表,进行表头设计, Z_1 、 $Z_2 \rightarrow 1$ 、3列

2、试验结果分析

表 7-11 $U_9(9^2)$ 试验方案及结果

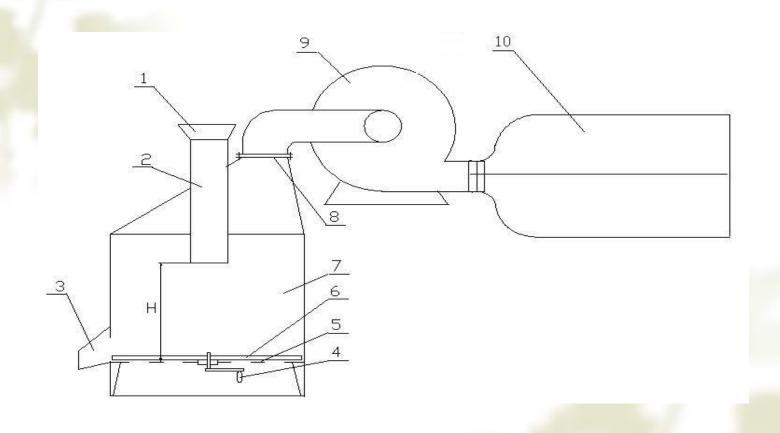
m #	(1)	(3)		
因素 试验号	$x_1(z_1)$	$x_2(z_2)$	y/g	
1	1 (136.5)	4 (200)	5. 8	
2	2 (137.0)	8 (240)	6. 3	
3	3 (137.5)	3 (190)	4. 9	
4	4 (138.0)	7 (230)	5. 4	
5	5 (138.5)	2 (180)	4. 0	
6	6 (139.0)	6 (220)	4. 5	
7	7 (139.5)	1 (170)	3. 0	
8	8 (140.0)	5 (210)	3.6	
9	9 (140.5)	9 (250)	4. 1	

由直观法,第二号试验结果较佳,即z₁₂、z₂₈

与最优组合z₁₁、z₂₉相比,接近最优点。

例7-3 采用垂直气流分离原理对玉米秸秆 茎秆碎料的外皮和髓实施分离,利用研制 的设备进行初步试验,以为正式试验进行 准备。主要影响因素为分离风速、进料量、 原料粒度、原料进料位置等因素, 由于缺 乏相关资料,需要探索各因素适宜的水平 范围,应安排多水平试验。为减少试验次 数,采用均匀试验。

1、试验指标及评价


物料分离效果分别用外皮分净率y₁和髓分净率y₂,以及外皮分离率y₃和髓分离率y₄表示。

$$y_{1} = \frac{m_{1}}{m_{0}} \times 100$$

$$y_{2} = \frac{m_{2}}{m_{0}} \times 100$$

$$y_{3} = \frac{m_{p} y_{1}}{(m_{p} y_{1} + m_{s} (1 - y_{2}))} \times 100$$

$$y_{4} = \frac{m_{s} y_{2}}{(m_{s} y_{2} + m_{p} (1 - y_{1}))} \times 100$$

1.进料口 2.进料管 3.重料出口 4.拨料器摇杆 5.匀风板 6.拨料器 7.分离室 8.风量调节 9.风机 10.除尘布袋(轻料出口) 图5-2 试验装置

2、主要因素选择及水平

从初步试验看,影响分离效果的主要因素有物料粒度、风速、进料量和进料口位置等,其中进料位置指进料口到匀风板的距离,即物料沉降距离。

试验将首先考察该分离方法对茎秆碎料的适应性, 所以选择了原料粒度、风速、进料量和进料口位置四个 因素进行考察,每个因素取5个水平,扩大因素水平范围, 以利于在进一步试验中合理选择因素水平。 结合茎秆粉碎原料的粒度分布特性,以及茎秆组分的悬浮特性,试验的风速范围确定为0.6~0.92m/s;原料粒度分为4种;结合初步试验,进料量范围为2~10kg/min,进料位置为300~500mm。

表5-2主要试验因素及水平

因素 水平	风速 z _I (m/s)	进料量z 2 z_2 (kg/min)	进料位置 z ₃ (mm)	原料粒度 z ₄ (mm)
1	0.60	2	500	1(5)
2	0.68	4	450	2(5)
3	0.76	6	400	3(8)
4	0.84	8	350	4(10)
5	0.92	10	300	5(12)

3、试验方案设计及其分析

(1) 试验方案设计

因为试验因素和水平均较多,为快速得 到各试验因素的影响及分离效果,而试验次数 不致过多,试验宜采用均匀试验。因为试验结 果不能采用方差分析的方法, 而只能采用多元 回归分析法, 所以试验次数必须大于待求的回 归系数个数m。对于4因素试验,m=4,即试验 次数应满足条件: $N \ge 4$ 。为保证试验的可靠性, 各水平重复一次,所以选择 U_{10} (10¹⁰)表安排 试验。

为在*U*₁₀(10¹⁰)表进行5水平试验,采用组合法将10水平表转换成5水平表,具体方法为对原表水平进行如下组合:

 $\{1, 2\} \rightarrow 1;$ $\{3, 4\} \rightarrow 2;$ $\{5, 6\} \rightarrow 3;$ $\{7, 8\} \rightarrow 4;$ $\{9, 10\} \rightarrow 5_{\circ}$

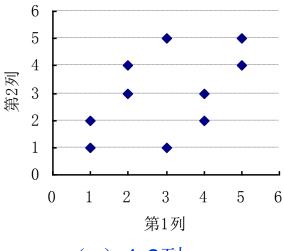
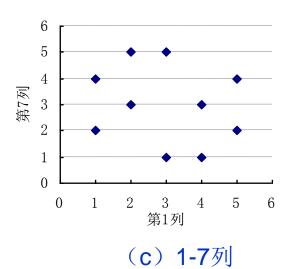
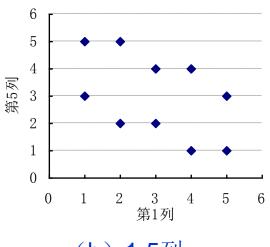
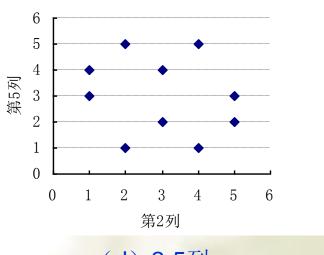

对组合后的新表,任两列之间分布不一定平等。按照均匀设计表*U*₁₀(10¹⁰)的使用表,对于4因素试验,4个因素应分别优先放在第1、2、5、7列上。对于因素原料粒度,只有4个水平,为便于安排试验,取其第1水平为拟水平,即将5mm筛孔碎料作为其第1水平处理。这样就完成了均匀试验方案设计。

表5-3 试验方案

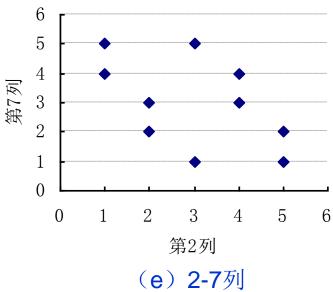

No	风速 z _I (m/s)	进料量 z ₂ (kg/min)	原料 粒度 z ₃ (mm)	进料 位置 z ₄ (mm)	y ₁ (%)	y ₂ (%)	y ₃ (%)	y ₄ (%)
1	1	1	3	4				
2	1	2	5	2				
3	2	3	2	5				
4	2	4	5	3				
5	3	5	2	1 (2)				
6	3	1	4	5				
7	4	2	1	3				
8	4	3	4	1 (2)				
9	5	4	1	4				
10	5	5	3	2				

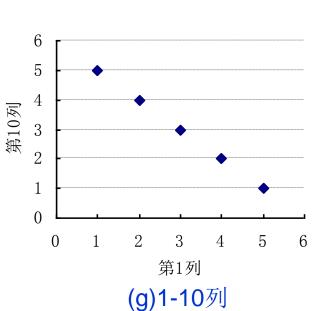

(2) 试验方案分析

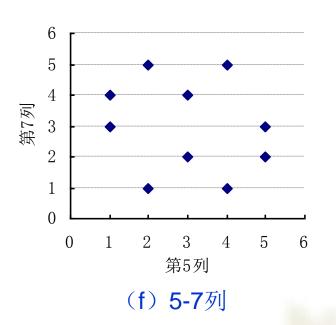
为考察任两列试验点分布的均匀性,标绘试验方案 U_{10} (5^{10})表的第1、2、5、7列任两列试验点分布图。



(a) 1-2列






(b) 1-5列

(d) 2-5列

由图可见,构造的试验方案任 两列都有着较好的均匀性,但 1-10列均匀性就较差。

7章 均匀设计

4.试验实施

(1) 试验材料

将去叶的玉米秸秆茎秆用锤片式粉碎机粉碎,粉碎时分别加装5、8、10、12mm孔径的筛板,得到4种不同粒度的碎料,原料量约为5×2×8kg(每种两份,每份8kg)装入大塑料袋内备用。原料平均含水率为12.65%。

(2) 试验过程

按照试验方案给出的试验组合进行各次试验。试验时,对各次试验顺序采用随机抽样的方法进行排序,以降低系统试验误差。分离室风速可以通过调节风机进风口面积的方法进行控制,进料量采用人工控制,在设定时间均匀送入规定的原料。

(3) 采样方法

各次试验结束后,分别对外皮出口和髓出口的分离原料质量进行称重,并编号记录。同时,从外皮和髓出口原料的不同位置各取约3×50g试样,进行外皮和髓碎料分净率的测定,取其平均值作为试验指标。试验结束后取约10g试样测定原料的含水率。

5、试验结果及初步分析

(1) 试验结果

表5-3 试验方案及结果

No	风速 z _I (m/s)	进料量 Z ₂ (kg/min)	原料 粒度 Z ₃ (mm)	进料 位置 Z ₄ (mm)	Y ₁ (%)	Y ₂ (%)	Y ₃ (%)	Y ₄ (%)
1	1	1	3	4	62.06	51. 42	76. 75	34. 40
2	1	2	5	2	68. 21	43. 92	69. 60	42. 34
3	2	3	2	5	51.24	35. 90	64. 24	24. 68
4	2	4	5	3	70. 54	49. 40	74. 07	45. 0 1
5	3	5	2	1 (2)	59. 58	54. 83	75. 12	37. 20
6	3	1	4	5	82. 08	67. 02	77. 96	72. 46
7	4	2	1	3	84. 15	73. 40	75. 77	82. 42
8	4	3	4	1 (2)	78. 24	53. 87	61.78	72. 20
9	5	4	1	4	71.04	49. 72	30. 50	84. 68
10	5	5	3	2	75. 33	48. 72	37. 73	82. 73

(2) 初步分析

由直观分析法进行初步分析。由表可见,四个试验指标的变化范围分别是:外皮分净率51.24~84.15%,髓分净率43.92~73.40%,外皮分离率30.50~77.96%,髓分离率24.68~84.68%。可见,垂直气流分离与水平气流分离相比,组分的分离效果得到了显著提高。

对于外皮分净率y1,最佳效果出现在第7次试验,对应的试验因素水平组合为{4,2,1,3};对于髓分净率y2,最佳效果也出现在第7次试验,对于外皮分离率y3,最佳效果出现在第6次试验,对应的试验因素水平组合为{3,1,4,5};对于髓分离率y4,最佳效果出现在第9次试验,对应的试验因素水平组合为{5,5,3,2}。

(3) 综合平衡

对4个试验指标的综合平衡分析见表5-4,可见,试验因素较佳组合为 Z_{41} 、 Z_{22} 、 Z_{23} 、 Z_{34} 。即风速0.84m/s、进料量4kg/min、进料位置450mm、物料粒度8mm筛板碎料。

表5-4 因素优水平的综合平衡

	风速	进料量	进料位置	原料粒度
试验指标	z ₁ 优水平	z ₂ 优水平	z ₃ 优水平	z ₄ 优水平
y_1	z ₄₁	z_{22}	<i>z</i> ₁₃	Z ₃₄
<u>y</u> 2	z ₄₁	z_{22}	<i>z</i> ₁₃	Z ₃₄
<i>y</i> ₃	z_{31}	z_{12}	Z ₄₃	Z ₅₄
<u>y</u> 4	z ₅₁	z_{52}	z_{33}	Z ₂₄

6、试验指标与试验因素的多元回归分析

(1) 回归方程的建立

为计算方便,对因素 z_1 、 z_2 、 z_3 、 z_4 的各水平值作如下线性变换:

$$x_{ij} = \frac{z_{ij} - \overline{z}_{j}}{\Delta z_{ij}}$$
 (i=1,2,...5, j=1,2,3,4)

变换后的因素水平值正好是相应列的水平数,如表5-3所示。这样,均匀设计的正则回归方程变为:

$$l_{ij}b_j = l_{iy}$$

式中: I_{ij} —信息矩阵; b_{j} —回归系数矩阵; I_{iy} —常数项矩阵; i—回归方程号,i=1,2,3,4; j—回归系数(因素)号,j=1,2,3,4。对本次试验方案有:

$$\begin{split} l_{11}b_{11} + l_{21}b_{21} + l_{31}b_{31} + l_{41}b_{41} &= l_{1y} \\ l_{12}b_{12} + l_{22}b_{22} + l_{32}b_{32} + l_{42}b_{42} &= l_{2y} \\ l_{13}b_{13} + l_{23}b_{23} + l_{33}b_{33} + l_{43}b_{43} &= l_{3y} \\ l_{14}b_{14} + l_{24}b_{24} + l_{34}b_{34} + l_{44}b_{44} &= l_{4y} \end{split}$$

其中

$$l_{ij} = \sum_{m=1}^{10} (x_{mi} - \bar{x}_i)(x_{mj} - \bar{x}_j)$$

$$l_{iy} = \sum_{m=1}^{10} (x_{mi} - \bar{x}_i)(y_{mi} - \bar{y}_i)$$

式中,i=1,2,3,4;j=1,2,3,4。对于各试验指标,其回归方程的信息矩阵相同,但常数项矩阵不同,分别为:

对于外皮分净率y1有:

$$20b_1 + 10b_2 - 10b_3 + 4b_4 = 72.81$$

$$10b_1 + 20b_2 + 4b_3 - 10b_4 = -29.24$$

$$-10b_1 + 4b_2 + 20b_3 + 10b_4 = 16.62$$

$$4b_1 - 10b_2 + 10b_3 + 20b_4 = -19.44$$

求解,得回归系数:

$$b_1 = 7.69$$
, $b_2 = -5.38$, $b_3 = 3.31$, $b_4 = -1.46$

常数项回归系数:

$$b_0 = l_{yy} - b_1 x_1 - b_2 x_2 - b_3 x_3 - b_4 x_4$$

式中

$$l_{yy} = \sum_{i=1}^{10} (y_i - \overline{y})^2$$

则有

$$\hat{y}_1 = 58.02 + 7.69x_1 - 5.38x_2 + 3.31x_3 - 1.46x_4$$

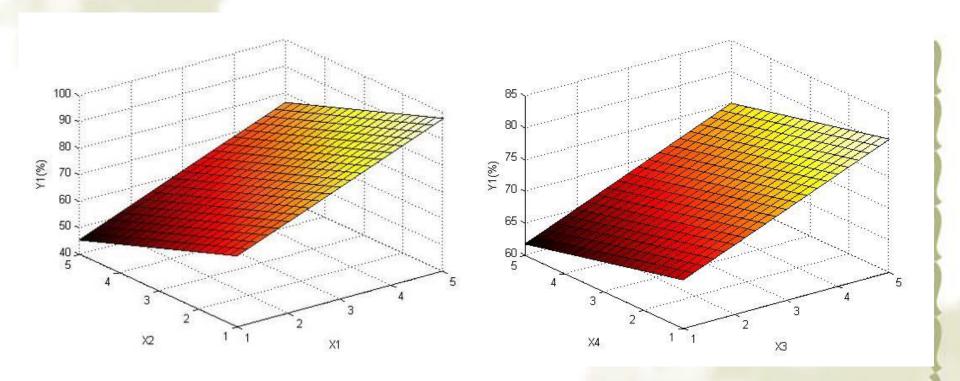
同理,可以得到其它3个指标的回归方程:

$$\hat{y}_1 = 58.02 + 7.69x_1 - 5.38x_2 + 3.31x_3 - 1.46x_4$$

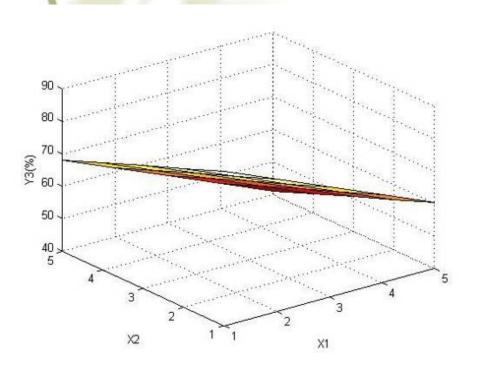
$$\hat{y}_2 = 66.48 + 4.07x_1 - 5.51x_2 - 4.86x_3 - 7.42x_4$$

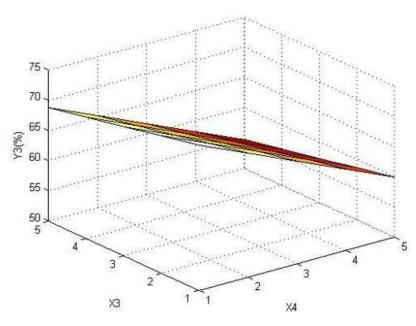
$$\hat{y}_3 = 113.73 - 6.78x_1 - 4.86x_2 - 1.31x_3 - 3.52x_4$$

$$\hat{y}_4 = 13.42 + 18.89x_1 - 7.42x_2 + 3.99x_3 - 0.66x_4$$

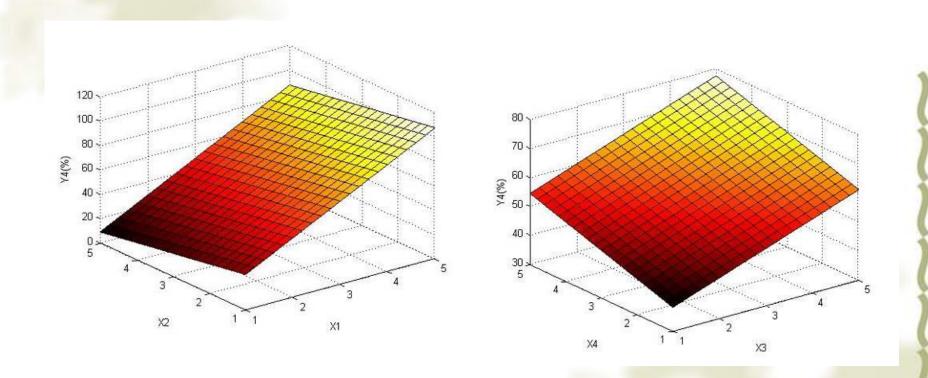

(2) 回归方程检验

各回归方程的显著性检验及结果


方差来源	回归偏差 平方和 <i>S</i> _回	回归 自由度 <i>f</i> _回	剩余偏差 平方和 <i>S</i> _剩	剩余 自由度 <i>f</i> _剩	F 值	α	显 著 性
y_1	800.54	4	169.44	5	5. 91	0.05	**
y_2	447.66	4	588.23	5	0.95	0.51	不显著
y_3	1533.84	4	1034.67	5	1.85	0. 26	*
y_4	4512.75	4	331.16	5	17. 03	0.01	***


(3) 主要因素对试验指标的影

响



a主要因素对外皮分净率的影响

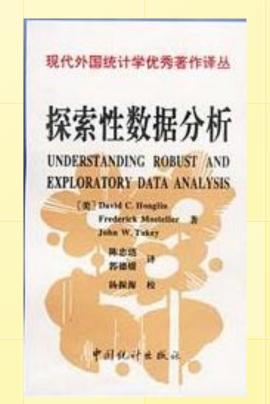
B、主要因素对外皮分离率的影响

C主要因素对髓分离率的影响

7、研究结论

- (1)垂直气流分离的主要影响因素为风速、进料量、粒度、进料位置。在试验条件下,其影响大小排序为:风速、粒度、进料位置和进料量。
- (2) 风速增大,外皮分净率提高,但外皮分离率降低; 髓分离率和分净率则相反;粒度较大时,对分离较为有 利。进料位置高,外皮碎料沉降路径长,重组分分离效 果好;反之轻组分分离效果好。进料量小有利于提高分 离效果,但是,也将导致单位风力负荷低。

- (3) 风速对分离影响范围很宽,通过调节风速,可以改变各排出口物料的质量比及组分。从试验效果看,适宜的分离风速范围为: 0.65~0.95m/s。
- (4)该试验装置验证了垂直气流分离的可行性,但仍存在 许多不足,需要进行系统设计,完善关键部件结构及总体 装置。

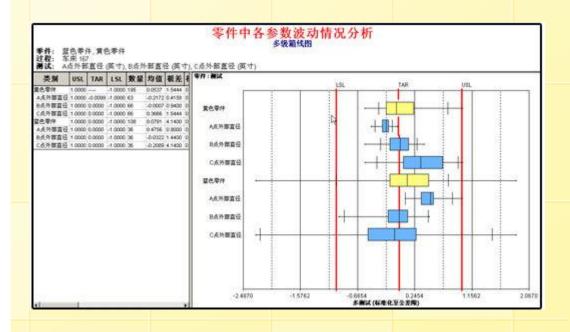

第10章 探索性数据分析

10.1 引言

探索性数据分析(EDA)是统计学新的研究方

向,在科研中应用广泛。EDA特点:

- (1) 以原始数据为研究对象
- (2) 分析方法灵活实际
- (3) 分析工具简单直观



EDA常用茎叶图、箱线图、残差图、字母值、数据变换、中位值平滑等方法进行数据分析,简单,不同于传统的统计方法。

Stem & Leaf

- 4. 23
- 4. 6
- 5. 00
- 5. 56
- 6. 023
- 6. 5578899
- 7. 0000111234
- 7. 5888999
- 8. 2244
- 8. 566788
- 9. 013
- 9. 578

Stem width: 10

EDA分析步骤

(1) 探索阶段

判析数据的模式和特点,并将其有序的显示 出来,再选择适宜的结构变量或随机变量模型。

(2) 证实阶段

对观察到的模式或效应的再现性进行评估。

本章主要介绍EDA基本概念与方法,为今后继

续学习和开展科研奠定基础。

- 10.2 基本概念
- 10.2.1 EDA的四大主题

(1) 耐抗性

耐抗性是指对数据不良行为的非敏感性。具有耐抗性的分析结果,有防御因小概率事件产生重大差错的作用。因此,耐抗分析方法是EDA的重要组成部分,重视数据主体部分,而不重视离群值。

由于数据中有野值,容易使数据产生畸变,故 要考虑野值的耐抗性,同时也要注意舍入误差和 分组误差的耐抗性。

稳健性设计和耐抗性密切相关,耐抗性可以看成是稳健性的一个方面。

中位数平滑也是一种耐抗性技术,中位数用于概况一个样本位置是高度耐抗的,而样本均值则不是,均值即不耐抗,也不稳健。

10.2.1 EDA的四大主题

(2) 残差

残差=数据-拟合

例如对于 (x_i, y_i)

拟合

$$\hat{y}_i = a + bx$$

残差

$$e_i = y_i - \hat{y}_i$$

EDA分析时,利用耐抗性把数据的主导行为和 反常行为清楚的分离开。

当数据的大部分遵从一致的模型,这个模型决定一个耐抗拟合。而耐抗残差则包含了数据是否有需要注意的系统性行为,如弯曲性、非加性以及非恒定变异性等,从而发现该模型是否存在剧烈偏离和机遇起伏。

(3) 重新表达

重新表达就是寻找合适的尺度或数据表达方式以利于简化分析。例如,动物肝脏对于某处理反应的研究,其质量表达有

 $W = \lg W = \sqrt{W}$

而那个更合适需要根据研究关系确定。重新表达是一种数据变换,如用新的函数值取代原数据值,EDA中常采用幂变换。

BMI指数 (体重指数)

指体重公斤数(kg)除以身高米数(m)平方得出的数字。

$$BMI = \frac{W}{h^2}$$

BMI是衡量胖瘦及健康程度的一个标准。

主要用于统计用途,当分析体重健康影响

时,BMI值是一个中立而可靠的指标。

	45	48	50	53	55	58	60	63	65	68	70	73	75	78	80	82.5	85	87.5	90
145.0	21.4	22.6	23.8	25.0	26.2	27.3	28.5	29.7	30.9	32.1	33.3	34.5	35.7	36.9	38.0	39.2	40.4	41.6	42.8
147.5	20.7	21.8	23.0	24.1	25.3	26.4	27.6	28.7	29.9	31.0	32.2	33.3	34.5	35.6	36.8	37.9	39.1	40.2	41.4
150.0	20.0	21.1	22.2	23.3	24.4	25,6	26.7	27.8	28.9	30.0	31.1	32.2	33.3	34.4	35.6	36.7	37.8	38.9	40.0
152.5	19.3	20.4	21.5	22.6	23.6	24.7	25.8	26.9	27.9	29.0	30.1	31.2	32.2	33.3	34.4	35.5	36.5	37.6	38.7
155.0	18.7	198	20.8	21.9	22.9	23.9	25.0	26.0	27.1	28.1	29.1	30.2	31.2	32.3	33.3	34.3	35.4	36.4	37.5
157.5	18.1	19.1	20.2	21.2	22.2	23.2	24.2	25.2	26.2	27.2	28.2	29.2	30.2	31.2	32.2	33.3	34.3	35.3	36.3
160.0	17.6	18.6	19.5	20.5	21.5	22.5	23.4	24.4	25.4	26.4	27.3	28.3	29.3	30.3	31.3	32.2	33.2	34.2	35.2
162.5	17.0	18.0	18.9	19.9	20.8	21.8	22.7	23.7	24.6	25.6	26.5	27.5	28.4	29.3	30.3	31.2	32.2	33.1	34.1
165.0	16.5	17.4	18.4	19.3	20,2	21.1	22.0	23.0	23.9	24.8	25.7	26.6	27.5	28.5	29.4	30.3	31.2	32.1	33.1
167.5	16.0	16.9	17.8	18.7	19.6	20.5	21.4	22.3	23.2	24,1	24.9	25.8	26.7	27.6	28.5	29.4	30.3	31.2	32.1
170.0	15.6	16.4	17.3	18.2	19.0	19.9	20.8	21.6	22.5	23.4	24.2	25.1	26.0	26.8	27.7	28.5	29.4	30.3	31.1
172.5	15.1	16.0	16.8	17.6	18.5	19.3	20.2	21.0	21.8	22.7	23.5	24.4	25.2	26.0	26.9	27.7	28.6	29.4	30.2
175.0	14.7	15.5	16.3	17.1	18.0	18.8	19.6	20.4	21.2	22.0	22.9	23.7	24.5	25.3	26.1	26.9	27.8	28.6	29.4
177.5	14.3	15.1	15.9	16.7	17.5	18.3	19.0	19.8	20.6	21.4	22.2	23.0	23.8	24.6	25.4	26.2	27.0	27.8	28.6
180.0	13.9	14.7	15.4	16.2	17.0	17.7	18.5	19.3	20.1	20.8	21.6	22.4	23.1	23.9	24.7	25.5	26.2	27.0	27.8
182.5	13.5	14.3	15.0	15.8	16.5	17.3	18.0	18.8	19.5	20.3	21.0	21.8	22.5	28.3	24.0	24.8	25.5	26.3	27.0
185.0	13.1	13.9	14.6	15.3	16.1	16.8	17.5	18.3	19.0	19.7	20.5	21,2	21.9	22.6	23.4	24.1	24.8	25.6	26.3
187.5	12.8	13.5	14.2	14.9	15.6	16.4	17.1	17.8	18.5	19.2	19.9	20,6	21.3	22.0	22.8	23.5	24.2	24.9	25.6
190.0	12.5	13.2	13.9	14.5	15.2	15.9	16.6	17.3	18.0	18.7	19.4	20.1	20.8	21.5	22.2	22.9	23.5	24.2	24.9

http://www.freebmicalculator.net

過輕

正常

過重

成人的BMI数值:

过轻: 低于18.5

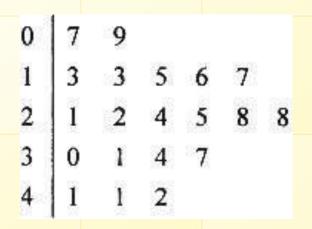
正常: 18.5-24.99

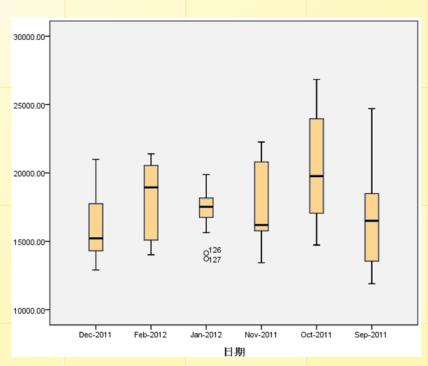
适中: 20-25

过重: 25-28

肥胖: 28-32

非常肥胖, 高于32


专家指出最理想的体重指数是22。


理想健康体重

$$W = 22 \times h^2$$

(4) 启示

启示就是通过EDA新的图解显示各种分析表达, 发现规律,得到数据特点、拟合、诊断量度和残 差等行为。

10.2.2 常用术语

(1) 批或数据批

批就是由n个观测值组成的数据组。与传统统 计数据相比,EDA数据具有耐抗性。传统统计中常 用的均值和方差,即使有一个野值,也会产生巨 大有害影响。而EDA用基于排序和计数统计量,如 中位数,则一批数据中的一小部分不论怎样变化, 也只对总统计量有很小的影响。

(2) 次序统计量

若把数据 $x_1, x_2, \dots x_n$

排成从小到大的次序,即

$$x_{(1)} \leqslant x_{(2)} \leqslant \cdots \leqslant x_{(n)}$$

则

$$x_{(1)}, x_{(2)}, \cdots x_{(n)}$$

叫做数据批 $x_1, x_2, \dots x_n$ 的次序统计量

而x(i)是第i个次序统计量。

次序统计量

观测数据从最小值到最大值的名次称为升秩观测数据从最大值到最小值的名次称为降秩

 $x_i: 2,7,4,9,1,5,10,6,3,8$

 $x_{(i)}$: 1,2,3,4,5,6,7,8,9,10

 $x_{(i)}$:10,9,8,7,6,5,4,3,2,1

(3) 深度 d(M)

数据批中一个数据值的深度是它的升秩和降秩 两者中的最小值。EDA规定:

次序统计量中的两个极端值 $x_{(1)}$ 和 $x_{(n)}$ 的深度为1两个次极端值 $x_{(2)}$ 和 $x_{(n-1)}$ 的深度为2

而第i个数据值和第(n+1)-i个数据值的深度为i

n(i)	1	2	3	4	5	6	7	8	9	10
x_i	3	7	5	9	10	8	1	4	2	6
x(i)	1	2	3	4	5	6	7	8	9	10
x(i)	10	9	8	7	6	5	4	3	2	1

(4) 中位数 (M)

次序统计量中间的数据,是数据批的中心。用

M表示,即 $M=med \mid x_i \mid$ 。设中位数的升秩为 i_0 ,

$$i_0 = n+1 - i_0$$

$$2i_0 = n+1$$

若中位数的深度为d(M),则 $d(M) = \frac{n+1}{2}$

$$d(M) = \frac{n+1}{2}$$

n(i)	1	2	3	4	5	6	7	8	9	
\mathcal{X}_i	3	7	5	9	10	8	1	4	2	
x(i)	1	2	3	4	5	6	7	8	9	
x(i)	9	8	7	6	5	4	3	2	1	

中位数的深度为d(M),则

$$d(M) = \frac{n+1}{2}$$

当n为奇数时,深度取整数,并恰好是次序统 计量中的一个数据。

当n为偶数时,d(M)将不取整数,而出现分数 1/2,此时次序统计量有两个中间数,中位数M就取此2数的算数平均值

中位数M取次序统计量次两个中间数的算数平均值

$$M = med |x_i| = \begin{cases} x_i \\ (x_k + x_{k+1}) \\ 2 \end{cases}$$

$$d(M) = \frac{n+1}{2} = \begin{cases} k \\ k + \frac{1}{2} \end{cases}$$

$$n = 2k$$

n = 2k - 1

$$n = 2k - 1$$

$$n = 2k$$

例 当n=3和n=4时

中位数的深度和中位数的值:

$$n=3$$
, $d(M)=2$, 中位数 $M=x_{(2)}$

$$n=4$$
, $d(M)=2.5$, $+ \boxed{\text{cis}M} = \frac{1}{2}[x_{(2)} + x_{(3)}]$

d(M)	1	2	3	4
$x_{(i)}$	<i>x</i> (1)	x(2)	x(3)	
$x_{(i)}$	<i>x</i> (1)	x(2)	x(3)	<i>x</i> (4)

(5) 四分数 (F)

中位数将次序统计量分为"低值"和"高值"两部分。规定:深度为 $\frac{[d(M)]+1}{2}$ 点为四分点。相应的数分别称为下、上四分数,分别记为 F_1 , F_a ,则:

$$d(F) = \frac{[d(M)]+1}{2} = \begin{cases} l & [d(M)]$$
为奇数
$$[d(M)]$$
为偶数

其中[]表示取整运算,遇有1/2时,四分数取中间2数的平均值。

例10-1 医学研究中,得到一种强化治疗方案对11 类病人的生存百分率,欲知什么百分率是典型的, 类间变异有多大?

次序统计量为

病人分	类	1	2	3	4	5	6	7	8	9	10	11
治疗效果	果%	36	37	45	52	56	58	66	68	75	90	100

治疗效果次序统计量

$$i$$
 1 2 3 4 5 6 7 8 9 10 11 $x_{(i)}$ 36 37 45 52 56 58 66 68 75 90 100

$$n = 11$$

中位数深度
$$d(M) = \frac{n+1}{2} = 6$$

中位数
$$M = x_{(6)} = 58$$

i 1 2 3 4 5 6 7 8 9 10 11 $x_{(i)}$ 36 37 45 52 56 58 66 68 75 90 100

四分数深度 =
$$\frac{[d(M)]+1}{2}$$
 = $\frac{6+1}{2}$ = 3.5

下四分数 $F_1 = \frac{x_{(3)} + x_{(4)}}{2} = \frac{45+52}{2} = 48.5$
上四分数 $F_a = \frac{x_{(9)} + x_{(8)}}{2} = \frac{68+75}{2} = 71.5$

由中位数、上下四分数和两个极端值,11类病人生存百分率的典型值为58%,最高位100%,最低位36%,其中一半为48.5%~71.5%。

(6) 展布 d_r

展布是反应数据集中程度的指标。EDA中通常用两个分位点的差距定义,如耐抗度是四分展布 d_r ,定义为

$$d_r = F_u - F_l$$

称为F展布,给出了数据批的中间一半的宽度,反应了其中心部分行为,而对边缘值不敏感。两个极端值之差为极差,但耐抗性不好。

(7) 临界值

EDA中,称F₁-1.5d_r与F_u+1.5d_r分别为下、上内界值,称下、上内界值点为界外截断点或离群值截断点,称最接近它们的数据为临界值,记为

$$X' = \min |x_i \perp x_i \ge F_l - 1.5d_r|$$

$$X'' = \max |x_i \perp x_i \le F_u + 1.5d_r|$$

将小于下内界值或大于上内界值的数据称为界外值或离群值,称 F_l — $3d_r$ 与 F_u + $3d_r$ 分别为下、上外界值,而称这之外的数据为远外值或异常值。

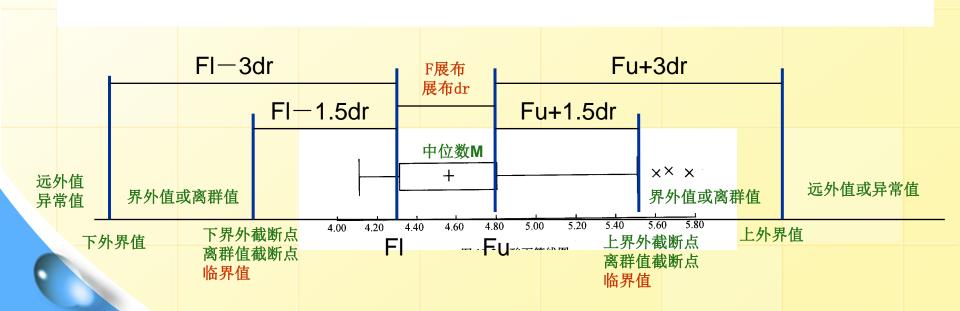

例 展布F和临界值

表 10-3 酸雨记录

序号	酸雨 pH 值	序号	酸雨pH值	序号	酸雨 pH 值
1	4. 12	10	4. 40	19	4. 73
2	4. 12	11	4. 41	20	4. 82
3	4. 26	12	4. 45	21	5. 08
4	4. 26	13	4. 52	22	5. 29
5	4. 29	14	4. 56	23	5.51
6	4. 30	15	4. 57	24	5. 62
7	4. 31	16	4. 60	25	5. 67
8	4. 39	17	4. 63	26	5. 78
9	4. 39	18	4. 64		

表 10-4 酸雨字母值表

n =	:26		字母值
字母	深度	l	u
M	13.5	<u> </u>	4. 54
F	7	4. 31	4. 82
极端	1	4. 12	5. 78
临界		4. 12	5. 51

课堂练习

一种强化治疗方案对8类病人的生存百分率如表所示。

要求计算并给出:

- (1) 将数据按升序排列;
- (2) 第六类数据(45%)的深度
- (3) 中位数及深度;
- (4) 四分数及深度
- (5) 展布和临界值

病人分类	1	2	3	4	5	6	7	8	
少户沙田の									
治疗效果%	56	37	58	52	36	45	68	66	

10.3 茎叶图

茎叶图用简单的图示方法将数据组织起来,可以直观地显示数据批的各种特性。如数据批接近对称的程度、展布大小、是否有些数远离其余数、数据集中情况、数据是否有间隙等。 茎叶图是EDA最基本的探索性技术,应用广泛。

例10-2 表10-2给出了21位妇女的平均生理周期的调查数据,试给出调查数据的茎叶图。

表 10-1 妇女生理周期数据

i	周期/天	基体温/℃	i	周期/天	基体温/℃	i	周期/天	基体温/℃
1	22. 9	36. 44	8	27. 6	36. 45	15	28. 8	36. 40
2	26. 3	36. 21	9	27. 6	36. 53	16	29. 4	36. 48
3	26. 6	36. 71	10	28. 0	36. 31	17	29. 9	36. 39
4	26. 8	36. 13	11	28. 4	36. 63	18	30. 0	36. 37
5	26. 9	36. 25	12	28. 4	36. 54	19	30. 3	36. 77
6	26. 9	36. 53	13	28. 5	36. 52	20	31. 2	36. 76
7	27.5	36. 41	14	28. 8	36. 62	21	31.8	36. 50

选择茎和叶:数据的个位和十分位

数据		分开		茎	和	叶
22.9	\rightarrow	22 9	\rightarrow	22	和	9

作茎叶图:

- (1) 以茎作为串,配置横行;
- (2) 根据前导数串22~31,一共需要10行(L=10);
- (3) 将叶写到相应的 茎所在行。

	i	周期/天	基体温/℃					06	,
	1	22. 9	36. 44		深度	茎	叶		
	2	26. 3	36. 21		1	22	9	160	-
	3	26. 6	36. 71		1	22			
	4	26. 8	36. 13			23			
	5	26. 9	36. 25						
	6	26. 9	36. 53			24			
ī.	7	27.5	36. 41			0.5			
	8	27. 6	36. 45			25			
	9	27. 6	36. 53		6	26	36899	中彳	亍
	10	28. 0	36. 31		Ū				立数
	11	28. 4	36, 63		9	27	566	6个	
	12	28. 4	36. 54				044700		
	13	28. 5	36. 52	对应数据		28	044588		
-	14	28. 8	36. 62	最大深度	6	29	49		
Ì	15	28. 8	36. 40		Š	2)			
	16	29. 4	36, 48		4	30	03		
	17	29. 9	36. 39						
	18	30. 0	36. 37		2	31	28	叶数	
	19	30. 3	36. 77		厦 10 1	1 平均生	华 期 国	N=21	1
	20	31. 2	36. 76						
	21	31. 8	36. 50	-	. 🗦	期茎叶图	· ·		

茎叶图的横行数与数据批中数据值的个数、数据范围以及主观判断有关。通常最大行数L:

$$L = [10 \times \lg n]$$

当: n = 21

有: $L = [10 \times \lg n] = [10 \times \lg 21] \approx 13$

按前导数串22~31,实际一共取10行(L=10)

茎叶图的横行茎的数值区间,简单的方法是采用10的幂作为区间宽度。以极差R与横行数L的比值上入到最靠近的10的幂来确定。

如: R = 31.8 - 22.9 = 8.9

而: $R/L = 8.9/10 = 0.68 \rightarrow 1$

:. 数值区间取1,即 22、23、24······31

深度	茎	叶
1	22	9
	23	
·	24	

研究中用到的茎叶图(1)

				树	茎	权	叶							
88	80	75	97		9	7	6	5						
57	69	74	96		9	4	4	3	2	0				
86	79	68	56		8	8	6	5	5					
95	85	79	74		8	3	2	1	1	0				
54	68	94	67		7	9	9	8	7	7	6	5	5	5
73	85	78	53		7	4	4	3	1	1	0			
83	65	77	48		6	9	8	8	7	5				
94	71	93	82		5	7	6							
77	71	64	81		5	4	3							
76	70	92	64		4	8								
89	81	75	63		4									
75														
									1000	THE STATE OF		100 B	100.00	253

表(1)某校 98 级概率统计成绩

BaiKe.GQSOSO.COM 图(1) 风喷空听齿表

研究中用到的茎叶图(2)

4.8	8
4.9	
5.0	7
5.1	0
5.2	6799
5.3	04469
5.4	2467
5.5	03578
5.6	12358
5.7	59
5.8	5

			甲	3	Z	33			
			2	18	1				
9	9	1	0	17	0	3	6	8	9
8	8	3	2	16	2	5	8		
			8	15	9				

10.4 字母值

EDA中,常用一个字母值作为从数据批抽取的总括值的标签。

一般按英文字母相反次序,从M开始,到A后

再接Z。

表 10-2 字母值与尾面积之间的关系

标 签	尾面积
M	1/2 = 0.5
$oldsymbol{F}$	1/4 = 0.25
E	1/8 = 0.125
D	1/16 = 0.0625
C	1/32 = 0.03125
В	1/64 = 0.015625
\boldsymbol{A}	1/128 = 0.0078125
\boldsymbol{Z}	1/256 = 0.00390625
Y	1/512 = 0.001953125
Z	1/1024 = 0. 0009765625

字母值从M开始,到A后再接Z,系列标签字母

依次标记为:

M: 中位数

F: 四分数

E: 八分数

D: 十六分数等

表 10-2 字母值与尾面积之间的关系

标 签	尾面积
M	1/2 = 0.5
$oldsymbol{F}$	1/4 = 0.25
E	1/8 = 0.125
D	1/16 = 0.0625
C	1/32 = 0.03125
В	1/64 = 0.015625
\boldsymbol{A}	1/128 = 0.0078125
\boldsymbol{Z}	1/256 = 0.00390625
Y	1/512 = 0.001953125
Z	1/1024 = 0.0009765625

这些总括值带上字母标签就叫做字母值。

EDA一般用5数总括,这是最简单、有效和灵活的长方形格式:

n

M 中位数深度

F 四分数深度

1

中位数

下四分数

上四分数

下极端值

上极端值

5数总括形式中, #n是指数据批有n个数据, M(中位数)、F(四分数)是标签, 极端值的标签就是它的深度1。

而八分数可进行7数总括,用于较大的数据批。 八分数在相应四分数与极端值之间一半的地方。 继续下去,可以得到十六分数、三十二分数等。

八分数深度 =
$$\frac{[四分数深度]+1}{2}$$

后深度 = $\frac{[前深度]+1}{2}$

例 10-3 对例 10-1中的次序统计量进行字母值的五数总括显示。

根据例 10-1 中的计算结果可列示该次序统计量的五数总括的字母值显示如下:

#	11	生存了	百分数
M	6	5	8
$\boldsymbol{\mathit{F}}$	3. 5	48. 5	71. 5
	1	36	100

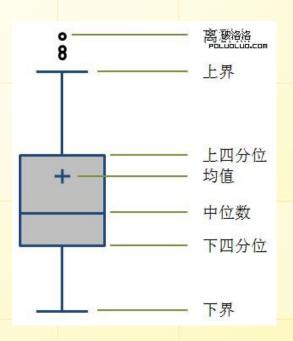
七数总括的字母值显示只是五数总括的扩充,即只要添加一个八分数行,方框外写标签 E 及其八分数深度;在方框内相应位置填上下、上八分数,结果如下:

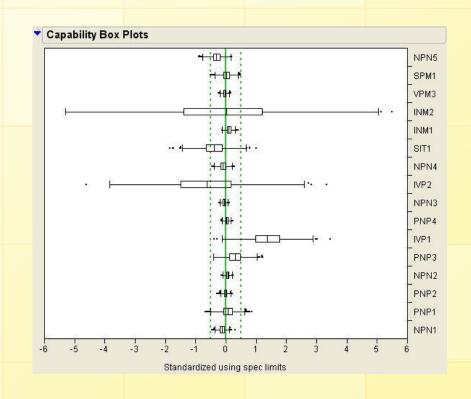
#	11	生存了	百分数	
M	6	5	8	
$\boldsymbol{\mathit{F}}$	3.5	48. 5	71. 5	
E	2	37	90	
	1	36	100	

可见,字母值是一组总括值,其特点是更多

的从批的尾部提取。

字母值或其组合可定义数据批的位置的耐抗 度,分析数据批的展布程度的耐抗量度,有助于 搜索离群值。


如中位数就是位置参数,可以描述数据批的中心位置。而三个字母的组合三均值,也是位置 参数,可用于数据批的耐抗分析。


三均值 =
$$\frac{1}{4}$$
(下四分数)+ $\frac{1}{2}$ (中位数)+ $\frac{1}{4}$ (上四分数)

10.5 箱线图

箱线图是数据批5数总括的图示,显示了数据批的结构特征要点,如位置、展布、偏度、尾长、

离群值等。

10.5.1 单批数据箱线图

10.5.1 单批数据箱线图

例 10-4 绘出表 10-3所示的某地区降雨中酸雨记录数据(pH 等于 7 为正常, 低于 7 为酸雨)的箱线图,分析该批数据的特点。

具体分析步骤如下:

(1) 构造五数总括并用字母值显示,如表 10-4 所示。

表 10-3 酸雨记录

序号	酸雨 pH 值	序号	酸雨 pH 值	序号	酸雨 pH 值
1	4. 12	10	4. 40	19	4. 73
2	4. 12	11	4. 41	20	4. 82
3	4. 26	12	4. 45	21	5. 08
4	4. 26	13	4. 52	22	5. 29
5	4. 29	14	4. 56	23	5. 51
6	4. 30	15	4. 57	24	5. 62
7	4. 31	16	4. 60	25	5. 67
8	4. 39	17	4. 63	26	5. 78
9	4. 39	18	4. 64		

表 10-4 酸雨字母值表

	n = 26			字母值	*****
	字母	深度	l		u
	M	13.5		4. 54	
	F	7	4. 31		4. 82
	极端	1	4. 12		5. 78
_	临界		4. 12		5. 51

M和F计算

表 10-3 酸雨记录

-						
	序号	酸雨 pH 值	序号	酸雨pH值	序号	酸雨pH值
_	1	4. 12	10	4. 40	19	4. 73
	2 -	4. 12	11	4. 41	20	4. 82
	3	4. 26	12	4. 45	21	5.08
	4	4. 26	13	4. 52	22	5. 29
	5	4. 29	14	4. 56	23	5. 51
	6	4. 30	15	4. 57	24	5.62
	7	4. 31	16	4. 60	25	5.67
	8	4. 39	17	4. 63	26	5. 78
	9	4. 39	18	4. 64		

表 10-4 酸雨字母值表

n = 26			字母值
字母	深度	l	u
M	13.5		4. 54
$oldsymbol{F}$	7	4. 31	4. 82
极端	1	4. 12	5. 78
临界		4. 12	5. 51

$$n = 26$$

$$d(M) = \frac{26+1}{2} = 13.5$$

$$d(F) = \frac{[d(M)]+1}{2} = \frac{13+1}{2} = 7$$

$$F_l = x_{(7)} = 4.31$$

$$F_u = x_{(20)} = 4.82$$

(2) 计算四分展布为

$$d_F = F_u - F_l = 4.82 - 4.31 = 0.51$$

计算内外界值为

下内界值 =
$$F_l$$
 - 1.5 d_F = 4.31 - 1.5 × 0.51 = 3.545

上内界值 =
$$F_u$$
 + 1. $5d_F$ = 4. $82 + 1.5 \times 0.51 = 5.585$

下外界值 =
$$F_i - 3d_F = 4.31 - 3 \times 0.51 = 2.78$$

上外界值 =
$$F_u$$
 + $3d_F$ = 4.82 + 3 × 0.51 = 6.35

显然,离群值截断点是 3.545 和 5.585,离群值有三个,即 5.62,5.67,5.78。

耒	10-3	酸雨记录
衣	TO-2	投附汇来

序号	酸雨 pH 值	序号	酸雨pH值	序号	酸雨 pH 值
1	4. 12	10	4. 40	19	4. 73
2	4. 12	11	4. 41	20	4. 82
3	4. 26	12	4. 45	21	5. 08
4	4. 26	13	4. 52	22	5. 29
5	4. 29	14	4. 56	23	5. 51
6	4. 30	15	4. 57	24	5, 62
7	4. 31	16	4. 60	25	5. 67
8	4. 39	17	4. 63	26	5. 78
9	4. 39	18	4. 64		

表 10-4 酸雨字母值表

n =	= 26	字母值			
字母	深度	- l	u		
M	13.5		4. 54		
F	7	4. 31	4. 82		
极端	1	4. 12	5. 78		
临界		4. 12	5. 51		

注意: 临界值和界外值(离群值)

(1) 计算下、上内界值,F_l-1.5d_r与F_u+1.5d_r,

得到界外截断点或离群值截断点;

(2) 确定临界值(最接近它们的数据)

$$X' = \min \left| x_i \perp x_i \ge F_l - 1.5 d_r \right|$$

$$X'' = \max \left| x_i \perp x_i \le F_u + 1.5 d_r \right|$$

(3) 确定界外值或离群值: 小于下内界值或大

于上内界值的数据。

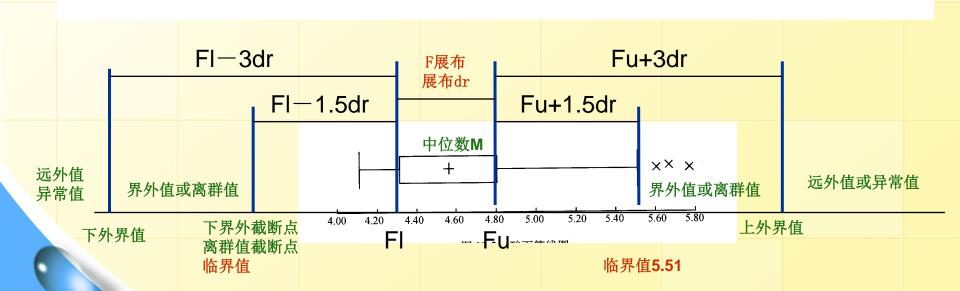

例 展布F和临界值

表 10-3 酸雨记录

序号	酸雨 pH 值	序号	酸雨pH值	序号	酸雨 pH 值
1	4. 12	10	4. 40	19	4. 73
2 ·	4. 12	11	4. 41	20	4. 82
3	4. 26	12	4. 45	21	5. 08
4	4. 26	13	4. 52	22	5. 29
5	4. 29	14	4. 56	23	5. 51
6	4. 30	15	4. 57	24	5, 62
7	4. 31	16	4. 60	25	5. 67
8	4. 39	17	4. 63	26	5. 78
9	4. 39	18	4. 64		

表 10-4 酸雨字母值表

n =	n = 26		字母值
字母	深度	l	u
M	13.5		4. 54
F	7	4. 31	4. 82
极端	1	4. 12	5. 78
临界		4. 12	5. 51

(3) 绘制箱线图

表 10-3	酸雨记录
--------	------

表 10-4 酸雨号	字母值表
------------	------

序号	酸雨 pH 值	序号	酸雨 pH 值	序号	酸雨 pH 值	n =	:26	字も	サ 値
1	4. 12	10	4. 40	19	4. 73	 字母	深度	7	
2	4. 12	11	4. 41	20	4.82	一 一	体及	l L	u
3	4. 26	12	4. 45	21	5. 08	M	13.5	4.	54
4	4. 26	13	4. 52	22	5. 29				
5	4. 29	14	4. 56	23	5. 51	$oldsymbol{F}$	7	4. 31	4. 82
6	4. 30	15	4. 57	24	5. 62	t vete	*******		
7	4. 31	16	4. 60	25	5. 67	极端	1	4. 12	5. 78
8	4. 39	17	4. 63	26	5. 78	.	, and the second second	1 10	5 51
9	4. 39	18	4. 64			~~~~~		4. 12	5, 51

下临界值=极端值

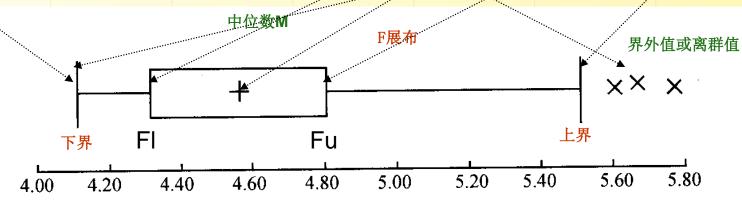


图 10-2 酸雨箱线图

课堂练习 箱线图绘制

表 10-3 酸雨记录

序号	酸雨 pH 值	序号	酸雨 pH 值	序号	酸雨 pH 值
1	3.42	10	4.40	19	4. 73
2	3.55	11	4. 41	20	4. 82
3	4. 26	12	4. 45	21	5. 08
4	4. 26	13	4. 52	22	5. 29
5	4. 29	14	4. 56	23	5. 51
6	4. 30	15	4. 57	24	5.62
7	4. 31	16	4. 60	25	5. 67
8	4. 39	17	4. 63	26	5. 78
9	4. 39	18	4. 64		

表 10-4 酸雨字母值表

n =	26	·	字母值
字母	深度	l	u
M	13.5		4. 54
F	7	4. 31	4. 82
极端	1	4. 12	5. 78
临界		3.55	5. 51

10.5.2 多批数据箱线图

10.5.2 多批数据箱线图

箱线图对于比较分析几批数据特别有用。把每批数据画个箱线图,把几个箱线图平行并排在一起,可以比较各批数据之间上述5个特征的相似与差异[40]。

例 10-5 现有某市 6 个商场某年 1~12 月份的销售额数据,如表 10-5 所示。

表 10-5	6 个商场的销售额
--------	-----------

(单位:万元)

商场月份	1	2	3	4	5	6	商场月份	1	2	3	4	5	6
1	825	372	1423	419	125	87	7	1469	869	1881	463	280	198
2	912	522	1606	210	162	57	8	1068	727	2609	391	300	235
3	1524	746	3141	396	277	98	9	972	825	2640	416	331	185
4	1728	527	1764	407	245	92	10	779	571	1797	332	228	139
5	1663	597	2877	456	284	109	11	878	658	4171	363	273	128
6	1665	589	2288	461	296	167	12	1014	674	8209	349	262	101

(1) 计算字母值

表 10-5	6 个商场的销售额
--------	-----------

(单位:万元)

商场月份	1	2	3	4	5	6	商场月份	1	2	3	4	5	6
1	825	372	1423	419	125	87	7	1469	869	1881	463	280	198
2	912	522	1606	210	162	57	8	1068	727	2609	391	300	235
3	1524	746	3141	396	277	98	9	972	825	2640	416	331	185
4	1728	527	1764	407	245	92	10	779	571	1797	332	228	139
5	1663	597	2877	456	284	109	11	878	658	4171	363	273	128
6	1665	589	2288	461	296	167	12	1014	674	8209	349	262	101

$$n = 12$$

$$d(M) = \frac{12+1}{2} = 6.5$$

$$d(F) = \frac{[d(M)]+1}{2} = \frac{6+1}{2} = 3.5$$

多批数据箱线图字母值

			表 10-6	6 个商场销售额	页字母表	(单位:万元)			
字母	商场	1	2	3	4	5	6		
. 1	И	1041	623. 5	2448. 5	401. 5	275	118. 5		
` <i>I</i>	r_l	895	549	1780. 5	356	236. 5	95		
F	u u	1594. 5	736. 5	3009	437. 5	290	182. 5		
d	! F	699. 5	187. 5	1228. 5	81.5	53. 5	87. 5		
内	l	- 154. 25	267. 75	-62.25	233. 75	156. 25	- 36. 25		
界。	u	2643.75	1017. 75	4851.75	559. 75	370. 25	313. 75		
X	zl	825	372	1423	332	162	57		
X	ru	1728	869	4177	463	331	235		
外	l	-1203.5	-13.5	-1237	111.5	76	-167.5		
界	u	3693	1299	6134	682	450. 5	445		
离	群				210	125			
异	常			8209					

(2) 多批数据箱线图

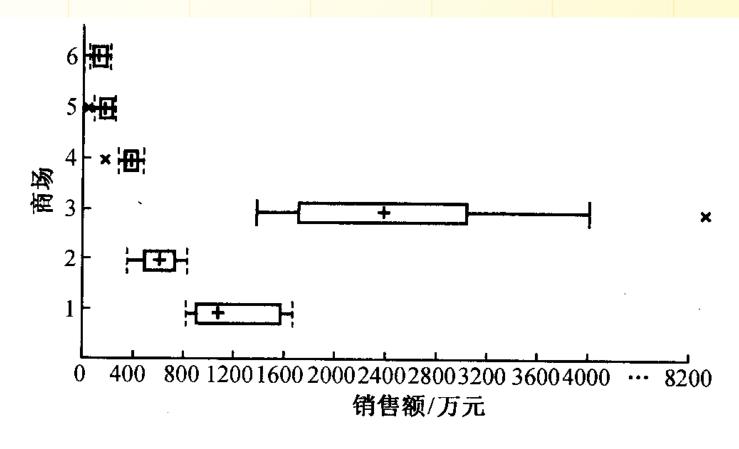


图 10-3 6 个商场销售额箱线图

(3) 多批数据箱线图分析

- 1) 第3商场销售额最大, 而第6商场最小;
- 2) 第3商场销售额数据展布最大,且有异常值8209万;
- 3) 所有数据均为非对称分布,其中1、2、6的中位数向下
- 偏,3、4、5的向上偏;
- 4)第4、5商场的销售额较小,4有离群值210万。5有离群值125万;
- 5)除6以外,中位数M大,其 展布也大,即箱线图中长方

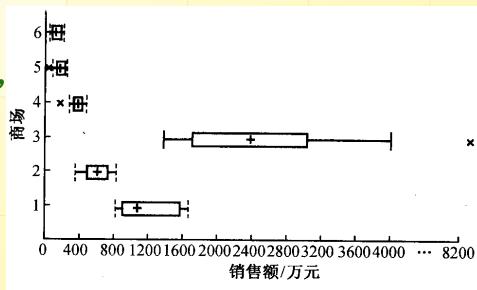
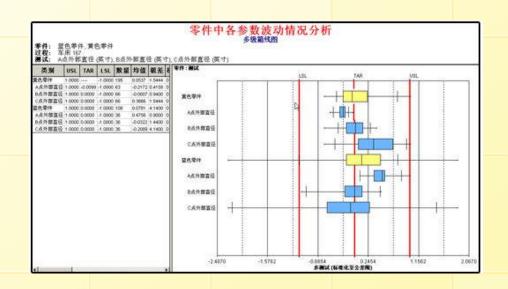
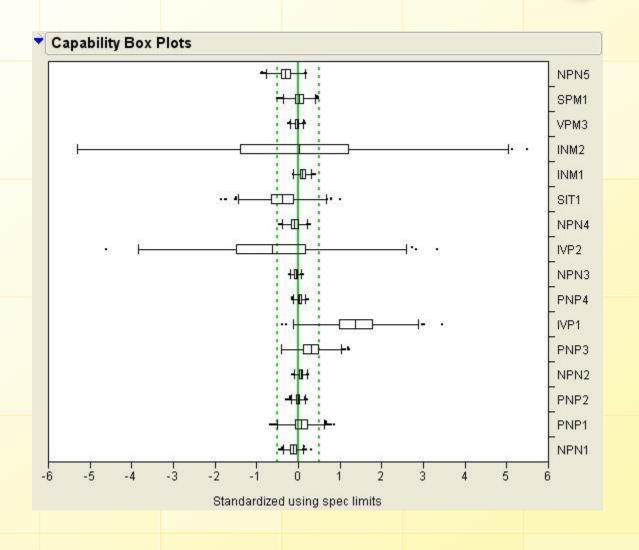
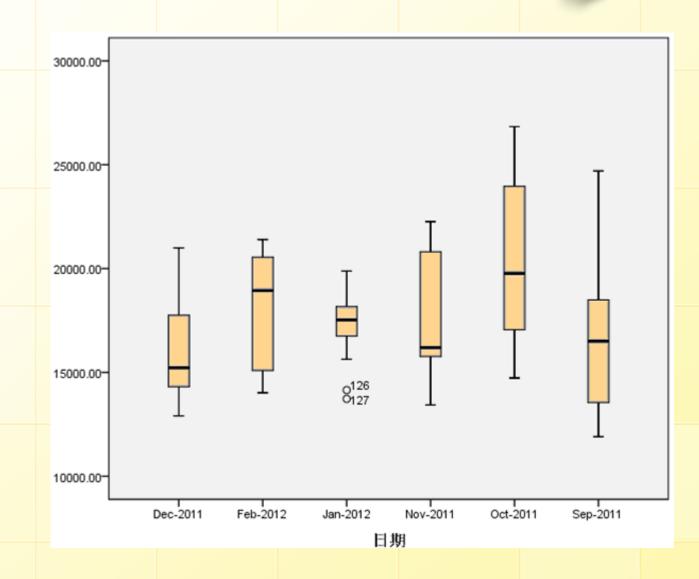



图 10-3 6个商场销售额箱线图


形较长。

箱线图特点


箱线图是一种简单快捷的数据整理与分析方法,无需计算平均值和方差,作图较快,将字母值和箱线图相结合,可以获得多方面的信息。

研究中的箱线图(1)

研究中的箱线图(2)

研究中的箱线图(3)

🦺 InfinityQS ProFicient SPCEE - 高级报告项目.ipj(白新阳)

项目 图表 数据录入 子组 事件 选项 优先项 帮助

过程事件帕

过程事件

零件中各参数波动情况分析 多級箱线图

零件: 蓝色零件,黄色零件

~	72.12.7.11.11.11	1
失控原因帕	所有失控事	直
各零件参数	各过程上参	7
控制图	組图	E
SPC 监控器	Cpk 报告	(
散点图	AA 趋势图	蓝
所有缺陷分	产品缺陷分	E
设备缺陷分	时间段内缺	(

类别	USL	TAR	LSL	数量	均值	极差	枋
黄色零件	1.0000		-1.0000	195	0.0512	1.5444	0.3
A点外部直径	1.0000	-0.0196	-1.0000	63	-0.2249	0.4118	0.0
高杰	1.0000	-0.0196	-1.0000	21	-0.2065	0.2937	0.0
郭海茵	1.0000	-0.0196	-1.0000	42	-0.2341	0.4118	0.0
B点外部直径	1.0000	0.0000	-1.0000	66	-0.0007	0.9400	0.1
高杰	1.0000	0.0000	-1.0000	24	0.0614	0.6329	0.1
郭海茵	1.0000	0.0000	-1.0000	42	-0.0362	0.8000	0.1
C点外部直径	1.0000	0.0000	-1.0000	66	0.3666	1.5444	0.3
高杰	1.0000	0.0000	-1.0000	24	0.3395	1.4044	0.3
郭海茵	1.0000	0.0000	-1.0000	42	0.3821	1.5000	0.3
蓝色零件	1.0000	0.0000	-1.0000	102	0.0876	4.1400	0.6
A点外部直径	1.0000	0.0000	-1.0000	36	0.4994	0.9000	0.2
白新阳	1.0000	0.0000	-1.0000	3	0.8000	0.0000	0.0
郭海茵	1.0000	0.0000	-1.0000	33	0.4721	0.9000	0.1
B点外部直径	1.0000	0.0000	-1.0000	33	-0.0412	1.4400	0.3
郭海茵	1.0000	0.0000	-1.0000	33	-0.0412	1.4400	0.3
C点外部直径	1.0000	0.0000	-1.0000	33	-0.2327	4.1400	0.8
郭海茵	1.0000	0.0000	-1.0000	33	-0.2327	4.1400	0.8

零件:测试:员工	LSL	TAR	USL	
黄色零件	-	+	+	
A点外部直径	.	 		
高杰		+ + +		
郭海茵	.	H		
B点外部直径	-	 		
高杰				
郭海茵		 		
C点外部直径	-	+	_	
高杰			_	
郭海茵	-			
蓝色零件 -	 			
A点外部直径			+	
白新阳			+	
郭海茵			+	
B点外部直径				
郭海茵				
C点外部直径 +	 			
郭海茵 十				→
				1955
-2.4870 -1	.5762 -0.6654 • ≠391≥+ ∩	0.2454 标准化至公差限 }	1.1562	2.0670

